CeraMac®-19 Demonstration plant Ceramic Microfiltration at Choa Chu Kang Waterworks G.Galjaard, J.Clement, W.S. Ang, M.H. Lim WS106 Development of sustainable water supply in Singapore KIVI Conference Delta Cities November 12, 2014 acknowledgement PUB Singapore’s national water agency Environment Water Institute (EWI) Singapore Black&Veatch United Engineering Singapore (UES) Metawater RWB water services University of Arizona (Snyder Group) Xylem, WEDECO, ITT 2 background 3 introduction PWN Technologies founded in 2010, spin off of R&D department of PWN PWN is the Water Supply Company of North-Holland (1920) – source is mainly (very challenging ) surface water – 720.000 connections – 1.7 million customers – 105 million m3 per year – 500 employees PWN Technologies (PWNT) – carries out applied water treatment research – technology provider SIX® and Ceramac® – offices in Singapore, the Netherlands, the UK – 35 million Euro turnover in 2013 4 micro/ultrafiltration (MF/UF) low pressure membrane filtration process small pores 10nm – 0,1 µm – removal of all colloidal and suspended matter – removal of bacteria and viruses absolute filtration – water quality effluent independent of quality influent – water quality effluent independent of capacity easy to automate relatively small footprint and modular 5 micro/ultrafiltration (MF/UF) alternative for conventional pretreatment (CSF) disinfection barrier pretreatment for reverse osmosis installed capacity worldwide 3500 MGD all polymeric membranes operational problems polymeric membranes – membrane fouling – short membrane lifetime – membrane integrity 6 courtesy of Pentair X-flow 7 8 courtesy of Zenon GE 9 ceramic membrane advantages long life expectancy > 15 years? capability to use strong cleaning chemicals and oxidants no risk of fiber breakage very narrow pore size distribution can be operated with very high backwash rates and BW pressure 10 Metawater ceramic MF membrane D = 0.18 m L = 1.5 m 11 courtesy of Metawater 12 courtesy of Metawater 13 ceramic membrane disadvantages economical feasibility low productivity at high backwash intervals 14 productivity as function of backwash interval 100 productivity [%] 80 existing ceramic block design 60 40 20 P.C. Kamp, G.Galjaard (2009), Brisbane 0 0 30 60 backwash interval [min]] 15 90 120 PWN Technologies CeraMac® on the market since 2011 200 elements in 1 pressure vessel improved economical feasibility – higher productivity – very compact, low footprint – less stainless steel – lower energy consumption alternative for polymeric membrane processes 16 productivity as function of backwash interval 100 productivity [%] Ceramac design 80 existing ceramic block design 60 40 20 P.C. Kamp, G.Galjaard (2009), Brisbane 0 0 30 60 backwash interval [min]] 17 90 120 Treatment Plant Andijk PWN 5500m3/h: CeraMac building 18 19 May 2012 Brussels Winner IWA Europe & West Asia Applied Research interest PUB in CeraMac® PUB in near future relies on desalination, water re-use and surface water treatment In all these treatment process low pressure membrane filtration plays an important part PUB operate at the moment the world’s biggest polymeric ultrafiltration plants operational challenges/difficulties at all of them 20 interest PUB in CeraMac® prove of technology – advantages ceramic membranes – CeraMac® process determine realistic capital and operational costs determine and optimise pre-treatment conditions determine water recovery experience in operation develop important data and knowledge for a full-scale design 21 demonstration testing program design and construction of 3 MLD CeraMac® demonstration plant site location Choa Chu Kang Water Works – very challenging water – side by side comparison can be made with existing failing polymeric system of GE Zenon 18 months of operation funding of Environment Water Institute (EWI) , PUB, and PWNT 22 23 Choa Chu Kang Waterworks phase 1 commissioned in 1975 (182.000m3/d) source is blended surface water from 3 reservoirs – Tengeh – Kranji – Pandan phase 2 commissioned in 1981 (also 182.000 m3/d) phase 1 upgraded in 2008 sand filters replaced by polymeric UF to control suspended (biological) matter 24 CCKWW 1975-2007 Tengeh Kranji Pandan screening aeration chlorination coagulation chlorine lime alum polymer pulsator clarification chlorine sand filtration ozonisation chlorine fluoride lime 25 storage ammonia CCKWW f1 2008 Tengeh Kranji Pandan screening aeration chlorination coagulation chlorine lime alum polymer pulsator clarification chlorine ultrafiltration ozonisation chlorine fluoride lime 26 storage ammonia specific tests and evaluation alternative for sand filters for fase2 find optimal operation – flux (maximize to reduce capital costs) – backwash frequency – enhanced backwash frequency – chemical cleaning frequency influence ozone on membrane performance long term stability operational costs sustainability 27 experimental set-up 28 possible scenario’s for CCKWW Tengeh Kranji Pandan screening aeration chlorination coagulation chlorine lime alum polymer pulsator clarification chlorine CeraMac ozonisation chlorine fluoride lime 29 storage ammonia possible scenario’s for CCKWW Tengeh Kranji Pandan screening aeration chlorination coagulation chlorine lime alum polymer pulsator clarification ozonisation ozone CeraMac chlorine carbondioxide fluoride lime 30 storage ammoniumsulpate experimental set-up phase 1: design, construction & SAT phase 2: clarified water phase 3: ozonated clarified water phase 4: longterm testing 31 experimental set-up phase 2 critical flux determination optimize back wash frequency optimize enhanced backwash frequency test runs are carried out at the same surface load – fixed totall produced volume (m3/m2) – fixed volume per filtration cycle (L/m2) – fixed volume per EBW-cycle (L/m2) 32 operational parameters phase 2 Parameter Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Flux (lmh) 50 100 150 200 200 200 200 200 200 BW Interval (min) 60 30 20 15 15 30 15 15 30 EBW Interval (A) 11th BW 11th BW 11th BW 11th BW 11th BW 6th BW 16th BW 31th BW 31st BW 5th EBW-A 5th EBW-A 5th EBW-A 5th EBW-A 5th EBW-A 5th EBW-A 5th EBW-A 5th EBW-A 93.4 93.4 93.4 93.4 93.4 96.4 93.6 93.8 96.8 600 300 200 150 300 300 300 300 300 14250 14250 14250 14250 28500 28500 28500 28500 28500 EBW Interval 5th EBW-A (B) Recovery (V%) Total Filtration runtime (h) Total Volume produced (m3) 33 experimental set-up phase 3 determine ozone decay with bench-scale test design ozone installation – target 0,5 mg O3/L on membrane surface – max capacity at found optimum phase 2 determine impact ozonated feed on operation at found optimum phase 2 find new optimum 34 35 36 summary results phase 2 37 TMP run 1 – 4 (phase 2) 250 1 flux [l/h.m2] TMP [kPa] 2 3 4 200 flux 150 100 50 actual TMP 0 3-Sep 13-Sep 23-Sep 3-Oct date 38 13-Oct 23-Oct 2-Nov operational parameters phase 2 Parameter Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 Run 9 Flux (lmh) 50 100 150 200 200 200 200 200 200 BW Interval (min) 60 30 20 15 15 30 15 15 30 EBW Interval (A) 11th BW 11th BW 11th BW 11th BW 11th BW 6th BW 16th BW 31th BW 31st BW 5th EBW-A 5th EBW-A 5th EBW-A 5th EBW-A 5th EBW-A 5th EBW-A 5th EBW-A 5th EBW-A 93.4 93.4 93.4 93.4 93.4 96.4 93.6 93.8 96.8 600 300 200 150 300 300 300 300 300 14250 14250 14250 14250 28500 28500 28500 28500 28500 EBW Interval 5th EBW-A (B) Recovery (V%) Total Filtration runtime (h) Total Volume produced (m3) 39 TMP during phase 2 TMP (kPa @ 25 °C) 250 1 2 3 5 4 6 7 8 9 200 150 100 50 0 30/08/11 40 29/09/11 29/10/11 28/11/11 28/12/11 27/01/12 26/02/12 particle counts Number of particles > 1 µm 30000 1 2 3 5 4 6 7 8 9 25000 feed 20000 15000 10000 5000 permeate 0 30-08-11 41 29-09-11 29-10-11 28-11-11 28-12-11 27-01-12 26-02-12 fouling rate TMP increase rate (kPa/h @ 25 °C) 3 2,5 2 1,5 1 0,5 0 1 42 2 3 4 5 test run 6 7 8 9 performance evaluation TMP increase rate (kPa/h @ 25 °C) 0,18 0,16 Calculated CIP-frequency: (220/0,1)/24 = 92 days 0,14 0,12 0,1 Average fouling rate without ozone 0,1kPa 0,08 0,06 0,04 0,02 0 7 8 test run 43 9 phase 2: clarified water start 1st of September 2011 ended 23th of February 2012 found optimal operation – flux : 200 lmh – BW-frequency : 2/h – EBW-frequency : 2-3/d (NaOCl 100ppm) – : 0-1/d (HCl pH=2 with 100ppm H2O2) – CIP frequency : >90 days – water recovery : >95% 44 summary results phase 3 ozone 45 possible scenario’s for CCKWW Tengeh Kranji Pandan screening chlorination coagulation phase 3 chlorine lime alum polymer pulsator clarification ozonisation ozone CeraMac chlorine carbondioxide fluoride lime 46 storage ammoniumsulpate ozone decay tests 1 DOC = 1,8 mg/L ozone 0,9 residual [mg/L] 0,8 0,7 0,6 0,5 0,4 0,3 1,5 O3/DOC (2,7 mg/L) 0,2 0,75 O3/DOC (1,35 mg/L) 0,1 0,25 O3/DOC (0,45 mg/L) 0 0 10 20 30 40 50 60 time 47 70 80 90 100 110 120 130 ozone decay tests 1 DOC = 1,8 mg/L ozone 0,9 residual [mg/L] 0,8 0,7 0,6 0,5 0,4 0,3 1,5 O3/DOC (2,7 mg/L) 0,2 0,75 O3/DOC (1,35 mg/L) 0,1 0,25 O3/DOC (0,45 mg/L) 0 0 10 20 30 40 50 60 time 48 70 80 90 100 110 120 130 TMP curve run 10 – ozonated feed TMP (kPa @ 25 °C) 200,0 Flux = 200lmh Filtr time = 30 min EBW = after 15 BW’s 150,0 100,0 50,0 0,0 20-04-12 49 22-04-12 24-04-12 26-04-12 TMP curve run 12 – ozonated feed TMP (kPa @ 25 °C) 200 Flux = 240 lmh Filtr time = 30 min EBW = after 15 BW’s 150 0,8 mg O3 /L 100 50 0 19-06-12 50 22-06-12 25-06-12 28-06-12 TMP curve run 12 – ozonated feed TMP (kPa @ 25 °C) 200 Flux = 240 lmh Filtr time = 30 min EBW = after 15 BW’s 150 0,8 mg O3 /L 0,5 mg O3 /L 100 50 0 19-06-12 51 22-06-12 25-06-12 28-06-12 TMP curve run 12 – ozonated feed TMP (kPa @ 25 °C) 200 Flux = 240 lmh Filtr time = 30 min EBW = after 15 BW’s 150 0,8 mg O3 /L 0,5 mg O3 /L 0,8 mg O3 /L 100 50 0 19-06-12 52 22-06-12 25-06-12 28-06-12 Run 14: TMP and ozone dosing TMP (kPa @ 25 °C) Ozone concentration (mg/L) 4 set point dose (mg/L) before membrane (mg/L) after membrane (mg/L) 100 80 60 2,4 Filtration cycle 3h Flux 240 lhm 40 20 0 19-07-12 53 3,2 1,6 0,8 20-07-12 21-07-12 22-07-12 0 23-07-12 TMP curve – ozonated feed TMP (kPa @ 25 °C) Filtration cycle 3h Flux 315 lhm avg. 43.1 kPa 54 TMP curve – ozonated feed TMP (kPa @ 25 °C) Filtration cycle 3h Flux 315 lhm avg. 43.1 kPa 55 TMP curve – ozonated feed TMP (kPa @ 25 °C) 61 hours filtration without BW & EBW BW EBW performance evaluation Average TMP for each run (kPa @ 25 °C) 80 70 Average TMP without ozone 63 kPa 60 50 Average TMP with ozone 33 kPa 40 30 20 10 0 7 8 test run 57 9 10 11 12 13 14 performance evaluation TMP increase rate (kPa/h @ 25 °C) 0,2 0,15 0,1 Calculated CIP-frequency: (220/0,1)/24 = 92 days Average fouling rate without ozone 0,1kPa Calculated CIP-frequency: (220/0,01)/24 = 920 days 0,05 Average fouling rate with ozone 0,01kPa 0 7 -0,05 58 8 test run 9 10 11 12 13 14 conclusions PUB study CeraMac® is technically feasible as alternative for sand filtration with and without ozone ozone dosage upfront of the membrane enhances the filtration process significantly – increase of permeability – lower fouling rate – higher recovery found temporary optimum is unsurpassed on this water type and scale capital as well as operational costs much lower than polymeric membranes 59 Choa Chu Kang Water Works 7600m3/h 60 next phases for PUB June 2013 - internal discussion upgrade CCKWW Dec 2013 - internal plan finalized Jan 2014 - start writing tender document July 2014 - tender leading engineering company Sept 2014 - CH2MHill leading engineering company Okt 2014 - start writing separate tender documents i.e. membrane part Dec 2014 - tender Process Upgrading at Choa Chu Kang Waterworks Feb 2015 - Contract 1 – Membrane Filtration System See more at: http://www.pub.gov.sg/tenders/forthcoming/Pages/default.aspx#sthash.ouqOptmj.dpuf 61 epilogue PWNT’s CeraMac® commercial design available late 2011 first full-scale installation (5500m3/h) on-line since may 2014, WTP Andijk PWN pilots in: – Netherlands (PWN); – United Kingdom (SWW); – Switserland (EWL); – Singapore (PUB, Sembcorp); – Australia (Water Corp, Melbourne Water); – United States (SJWC, MPU). full-scale designs made for: – SJWC Montevina – EWL Luzern – SWW WTW Roborough 62 CeraMac®-19 Demonstration plant Ceramic Microfiltration at Choa Chu Kang Waterworks G.Galjaard, J.Clement, W.S. Ang, M.H. Lim WS106 Development of sustainable water supply in Singapore KIVI Conference Delta Cities November 12, 2014
© Copyright 2025 ExpyDoc