CeraMac®-19 Demonstration plant Ceramic Microfiltration at

CeraMac®-19 Demonstration plant
Ceramic Microfiltration
at Choa Chu Kang Waterworks
G.Galjaard, J.Clement, W.S. Ang, M.H. Lim
WS106
Development of sustainable water supply in Singapore
KIVI Conference Delta Cities November 12, 2014
acknowledgement
PUB Singapore’s national water agency
 Environment Water Institute (EWI) Singapore
 Black&Veatch
 United Engineering Singapore (UES)
 Metawater
 RWB water services
 University of Arizona (Snyder Group)
 Xylem, WEDECO, ITT

2
background
3
introduction PWN Technologies

founded in 2010, spin off of R&D department of PWN

PWN is the Water Supply Company of North-Holland (1920)
– source is mainly (very challenging ) surface water
– 720.000 connections
– 1.7 million customers
– 105 million m3 per year
– 500 employees

PWN Technologies (PWNT)
– carries out applied water treatment research
– technology provider SIX® and Ceramac®
– offices in Singapore, the Netherlands, the UK
– 35 million Euro turnover in 2013
4
micro/ultrafiltration (MF/UF)

low pressure membrane filtration process

small pores 10nm – 0,1 µm
– removal of all colloidal and suspended matter
– removal of bacteria and viruses

absolute filtration
– water quality effluent independent of quality influent
– water quality effluent independent of capacity

easy to automate

relatively small footprint and modular
5
micro/ultrafiltration (MF/UF)

alternative for conventional pretreatment (CSF)

disinfection barrier

pretreatment for reverse osmosis

installed capacity worldwide 3500 MGD

all polymeric membranes

operational problems polymeric membranes
– membrane fouling
– short membrane lifetime
– membrane integrity
6
courtesy of Pentair X-flow
7
8
courtesy of Zenon GE
9
ceramic membrane advantages

long life expectancy > 15 years?

capability to use strong cleaning chemicals
and oxidants

no risk of fiber breakage

very narrow pore size distribution

can be operated with very high backwash rates
and BW pressure
10
Metawater ceramic MF membrane
D = 0.18 m
L = 1.5 m
11
courtesy of Metawater
12
courtesy of Metawater
13
ceramic membrane
disadvantages

economical feasibility

low productivity at high backwash intervals
14
productivity as function of backwash interval
100
productivity
[%]
80
existing ceramic block design
60
40
20
P.C. Kamp, G.Galjaard (2009), Brisbane
0
0
30
60
backwash interval [min]]
15
90
120
PWN Technologies CeraMac®

on the market since 2011

200 elements in 1 pressure vessel

improved economical feasibility
– higher productivity
– very compact, low footprint
– less stainless steel
– lower energy consumption

alternative for polymeric membrane
processes
16
productivity as function of backwash interval
100
productivity
[%]
Ceramac design
80
existing ceramic block design
60
40
20
P.C. Kamp, G.Galjaard (2009), Brisbane
0
0
30
60
backwash interval [min]]
17
90
120
Treatment Plant Andijk PWN 5500m3/h: CeraMac building
18
19
May 2012 Brussels Winner IWA Europe & West Asia Applied Research
interest PUB in CeraMac®

PUB in near future relies on desalination, water re-use and
surface water treatment

In all these treatment process low pressure membrane
filtration plays an important part

PUB operate at the moment the world’s biggest polymeric
ultrafiltration plants

operational challenges/difficulties at all of them
20
interest PUB in CeraMac®

prove of technology
– advantages ceramic membranes
– CeraMac® process

determine realistic capital and operational costs

determine and optimise pre-treatment conditions

determine water recovery

experience in operation

develop important data and knowledge for a full-scale
design
21
demonstration testing program

design and construction of 3 MLD CeraMac® demonstration
plant

site location Choa Chu Kang Water Works
– very challenging water
– side by side comparison can be made with existing
failing polymeric system of GE Zenon

18 months of operation

funding of Environment Water Institute (EWI) , PUB, and
PWNT
22
23
Choa Chu Kang Waterworks

phase 1 commissioned in 1975 (182.000m3/d)

source is blended surface water from 3 reservoirs
– Tengeh
– Kranji
– Pandan

phase 2 commissioned in 1981 (also 182.000 m3/d)

phase 1 upgraded in 2008 sand filters replaced by
polymeric UF to control suspended (biological) matter
24
CCKWW 1975-2007
Tengeh
Kranji
Pandan
screening
aeration
chlorination
coagulation
chlorine
lime
alum
polymer
pulsator clarification
chlorine
sand filtration
ozonisation
chlorine
fluoride
lime
25
storage
ammonia
CCKWW f1 2008
Tengeh
Kranji
Pandan
screening
aeration
chlorination
coagulation
chlorine
lime
alum
polymer
pulsator clarification
chlorine
ultrafiltration
ozonisation
chlorine
fluoride
lime
26
storage
ammonia
specific tests and evaluation

alternative for sand filters for fase2

find optimal operation
– flux (maximize to reduce capital costs)
– backwash frequency
– enhanced backwash frequency
– chemical cleaning frequency

influence ozone on membrane performance

long term stability

operational costs

sustainability
27
experimental set-up
28
possible scenario’s for CCKWW
Tengeh
Kranji
Pandan
screening
aeration
chlorination
coagulation
chlorine
lime
alum
polymer
pulsator clarification
chlorine
CeraMac
ozonisation
chlorine
fluoride
lime
29
storage
ammonia
possible scenario’s for CCKWW
Tengeh
Kranji
Pandan
screening
aeration
chlorination
coagulation
chlorine
lime
alum
polymer
pulsator clarification
ozonisation
ozone
CeraMac
chlorine
carbondioxide
fluoride
lime
30
storage
ammoniumsulpate
experimental set-up

phase 1: design, construction & SAT

phase 2: clarified water

phase 3: ozonated clarified water

phase 4: longterm testing
31
experimental set-up phase 2

critical flux determination

optimize back wash frequency

optimize enhanced backwash frequency

test runs are carried out at the same surface load
– fixed totall produced volume (m3/m2)
– fixed volume per filtration cycle (L/m2)
– fixed volume per EBW-cycle (L/m2)
32
operational parameters phase 2
Parameter
Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9
Flux (lmh)
50
100
150
200
200
200
200
200
200
BW Interval
(min)
60
30
20
15
15
30
15
15
30
EBW Interval
(A)
11th BW
11th BW
11th BW
11th BW
11th BW
6th BW
16th BW
31th BW
31st BW
5th EBW-A
5th EBW-A
5th EBW-A
5th EBW-A
5th EBW-A
5th EBW-A
5th EBW-A
5th EBW-A
93.4
93.4
93.4
93.4
93.4
96.4
93.6
93.8
96.8
600
300
200
150
300
300
300
300
300
14250
14250
14250
14250
28500
28500
28500
28500
28500
EBW Interval
5th EBW-A
(B)
Recovery
(V%)
Total
Filtration
runtime (h)
Total Volume
produced
(m3)
33
experimental set-up phase 3

determine ozone decay with bench-scale test

design ozone installation
– target 0,5 mg O3/L on membrane surface
– max capacity at found optimum phase 2

determine impact ozonated feed on operation at found
optimum phase 2

find new optimum
34
35
36
summary results phase 2
37
TMP run 1 – 4 (phase 2)
250
1
flux [l/h.m2]
TMP [kPa]
2
3
4
200
flux
150
100
50
actual TMP
0
3-Sep
13-Sep
23-Sep
3-Oct
date
38
13-Oct
23-Oct
2-Nov
operational parameters phase 2
Parameter
Run 1
Run 2
Run 3
Run 4
Run 5
Run 6
Run 7
Run 8
Run 9
Flux (lmh)
50
100
150
200
200
200
200
200
200
BW Interval
(min)
60
30
20
15
15
30
15
15
30
EBW Interval
(A)
11th BW
11th BW
11th BW
11th BW
11th BW
6th BW
16th BW
31th BW
31st BW
5th EBW-A
5th EBW-A
5th EBW-A
5th EBW-A
5th EBW-A
5th EBW-A
5th EBW-A
5th EBW-A
93.4
93.4
93.4
93.4
93.4
96.4
93.6
93.8
96.8
600
300
200
150
300
300
300
300
300
14250
14250
14250
14250
28500
28500
28500
28500
28500
EBW Interval
5th EBW-A
(B)
Recovery
(V%)
Total
Filtration
runtime (h)
Total Volume
produced
(m3)
39
TMP during phase 2
TMP (kPa @ 25 °C)
250
1
2
3
5
4
6
7
8
9
200
150
100
50
0
30/08/11
40
29/09/11
29/10/11
28/11/11
28/12/11
27/01/12
26/02/12
particle counts
Number of particles > 1 µm
30000
1
2
3
5
4
6
7
8
9
25000
feed
20000
15000
10000
5000
permeate
0
30-08-11
41
29-09-11
29-10-11
28-11-11
28-12-11
27-01-12
26-02-12
fouling rate
TMP increase rate (kPa/h @ 25 °C)
3
2,5
2
1,5
1
0,5
0
1
42
2
3
4
5
test run
6
7
8
9
performance evaluation
TMP increase rate (kPa/h @ 25 °C)
0,18
0,16
Calculated CIP-frequency:
(220/0,1)/24 = 92 days
0,14
0,12
0,1
Average fouling rate without ozone 0,1kPa
0,08
0,06
0,04
0,02
0
7
8
test run
43
9
phase 2: clarified water

start 1st of September 2011

ended 23th of February 2012

found optimal operation
– flux
: 200 lmh
– BW-frequency
: 2/h
– EBW-frequency : 2-3/d (NaOCl 100ppm)
–
: 0-1/d (HCl pH=2 with 100ppm H2O2)
– CIP frequency
: >90 days
– water recovery : >95%
44
summary results phase 3
ozone
45
possible scenario’s for CCKWW
Tengeh
Kranji
Pandan
screening
chlorination
coagulation
phase 3
chlorine
lime
alum
polymer
pulsator clarification
ozonisation
ozone
CeraMac
chlorine
carbondioxide
fluoride
lime
46
storage
ammoniumsulpate
ozone decay tests
1
DOC = 1,8 mg/L
ozone
0,9
residual
[mg/L] 0,8
0,7
0,6
0,5
0,4
0,3
1,5 O3/DOC (2,7 mg/L)
0,2
0,75 O3/DOC (1,35 mg/L)
0,1
0,25 O3/DOC (0,45 mg/L)
0
0
10
20
30
40
50
60
time
47
70
80
90
100 110 120 130
ozone decay tests
1
DOC = 1,8 mg/L
ozone
0,9
residual
[mg/L] 0,8
0,7
0,6
0,5
0,4
0,3
1,5 O3/DOC (2,7 mg/L)
0,2
0,75 O3/DOC (1,35 mg/L)
0,1
0,25 O3/DOC (0,45 mg/L)
0
0
10
20
30
40
50
60
time
48
70
80
90
100 110 120 130
TMP curve run 10 – ozonated feed
TMP (kPa @ 25 °C)
200,0
Flux
= 200lmh
Filtr time = 30 min
EBW
= after 15 BW’s
150,0
100,0
50,0
0,0
20-04-12
49
22-04-12
24-04-12
26-04-12
TMP curve run 12 – ozonated feed
TMP (kPa @ 25 °C)
200
Flux
= 240 lmh
Filtr time = 30 min
EBW
= after 15 BW’s
150
0,8 mg O3 /L
100
50
0
19-06-12
50
22-06-12
25-06-12
28-06-12
TMP curve run 12 – ozonated feed
TMP (kPa @ 25 °C)
200
Flux
= 240 lmh
Filtr time = 30 min
EBW
= after 15 BW’s
150
0,8 mg O3 /L
0,5 mg O3 /L
100
50
0
19-06-12
51
22-06-12
25-06-12
28-06-12
TMP curve run 12 – ozonated feed
TMP (kPa @ 25 °C)
200
Flux
= 240 lmh
Filtr time = 30 min
EBW
= after 15 BW’s
150
0,8 mg O3 /L
0,5 mg O3 /L
0,8 mg O3 /L
100
50
0
19-06-12
52
22-06-12
25-06-12
28-06-12
Run 14: TMP and ozone dosing
TMP (kPa @ 25 °C)
Ozone concentration (mg/L)
4
set point dose (mg/L)
before membrane (mg/L)
after membrane (mg/L)
100
80
60
2,4
Filtration cycle 3h
Flux 240 lhm
40
20
0
19-07-12
53
3,2
1,6
0,8
20-07-12
21-07-12
22-07-12
0
23-07-12
TMP curve – ozonated feed
TMP (kPa @ 25 °C)
Filtration cycle 3h
Flux 315 lhm
avg. 43.1 kPa
54
TMP curve – ozonated feed
TMP (kPa @ 25 °C)
Filtration cycle 3h
Flux 315 lhm
avg. 43.1 kPa
55
TMP curve – ozonated feed
TMP (kPa @ 25 °C)
61 hours filtration
without BW & EBW
BW
EBW
performance evaluation
Average TMP for each run (kPa @ 25 °C)
80
70
Average TMP without ozone 63 kPa
60
50
Average TMP with ozone 33 kPa
40
30
20
10
0
7
8
test run
57
9
10
11
12
13
14
performance evaluation
TMP increase rate (kPa/h @ 25 °C)
0,2
0,15
0,1
Calculated CIP-frequency:
(220/0,1)/24 = 92 days
Average fouling rate without ozone 0,1kPa
Calculated CIP-frequency:
(220/0,01)/24 = 920 days
0,05
Average fouling rate with ozone 0,01kPa
0
7
-0,05
58
8
test run
9
10
11
12
13
14
conclusions PUB study

CeraMac® is technically feasible as alternative for sand
filtration with and without ozone

ozone dosage upfront of the membrane enhances the
filtration process significantly
– increase of permeability
– lower fouling rate
– higher recovery

found temporary optimum is unsurpassed on this water
type and scale

capital as well as operational costs much lower than
polymeric membranes
59
Choa Chu Kang Water Works 7600m3/h
60
next phases for PUB

June 2013 - internal discussion upgrade CCKWW

Dec 2013 - internal plan finalized

Jan 2014 - start writing tender document

July 2014 - tender leading engineering company

Sept 2014 - CH2MHill leading engineering company

Okt 2014 - start writing separate tender documents i.e.
membrane part

Dec 2014 - tender Process Upgrading at Choa Chu Kang
Waterworks

Feb 2015 - Contract 1 – Membrane Filtration System
See more at: http://www.pub.gov.sg/tenders/forthcoming/Pages/default.aspx#sthash.ouqOptmj.dpuf
61
epilogue PWNT’s CeraMac®

commercial design available late 2011

first full-scale installation (5500m3/h) on-line since may
2014, WTP Andijk PWN

pilots in:
– Netherlands (PWN);
– United Kingdom (SWW);
– Switserland (EWL);
– Singapore (PUB, Sembcorp);
– Australia (Water Corp, Melbourne Water);
– United States (SJWC, MPU).

full-scale designs made for:
– SJWC Montevina
– EWL Luzern
– SWW WTW Roborough
62
CeraMac®-19 Demonstration plant
Ceramic Microfiltration
at Choa Chu Kang Waterworks
G.Galjaard, J.Clement, W.S. Ang, M.H. Lim
WS106
Development of sustainable water supply in Singapore
KIVI Conference Delta Cities November 12, 2014