Appendix A Curvilinear coordinates

Appendix A
Curvilinear coordinates
A.1
Lam´
e coefficients
Consider set of equations
ξi = ξi (x1 , x2 , x3 ) ,
i = 1, 2, 3
where ξ1 , ξ2 , ξ3 independent, single-valued and continuous
(x1 , x2 , x3 ) : coordinates of point P in Cartesian system with radius-vector x
(ξ1 , ξ2 , ξ3 ) : coordinates of point P in curvilinear system
e1 , e2 , e3 : base unit vectors in Cartesian coordinates
eξ1 , eξ2 , eξ3 : base unit vectors in curvilinear system
we restrict ourselves to orthogonal curvilinear coordinates systems
eξi · eξj = δij
Consider x = x(xi (ξj )) and take the total differential (summation over double appearing
indices understood)
dx =
∂x
dξj
∂ξj
∂x
partial derivative keeping ξ2 , ξ3 fixed: vector tangential to coordinate line ξ1
∂ξ1
−→
∂x
= h1 eξ1
∂ξ1
in general
dx = h1 dξ1 eξ1 + h2 dξ2 eξ2 + h3 dξ3 eξ3
hi Lam´e coefficients
Those coefficients (might) depend on the coordinates ξi
hi = hi (ξ1 , ξ2 , ξ3 )
157
hi dξi (no summation) components of length element along eξi
Without restriction to orthogonal systems the length element ds = |dx| is defined as
∂xj ∂xj
dξl dξm = glm dξl dξm
∂ξl ∂ξm
ds2 = dx · dx = dxj dxj =
Coefficients
glm =
∂xj ∂xj
∂ξl ∂ξm
are called the elements of the metric tensor
For an orthogonal curvilinear system the base vectors eξ1 , eξ2 , eξ3 are mutually perpendicular and form a right-handed system
We get the length element squared
ds2 = h21 (dξ1 )2 + h22 (dξ2 )2 + h23 (dξ3 )2
the Lam´e coefficients
g11 = h21 ,
g22 = h22 ,
g33 = h23 ,
gik = 0 for i 6= k
the volume element (elementary rectangular box)
d3 x ≡ dV = h1 h2 h3 dξ1 dξ2 dξ3
158
A.2
Some special orthogonal coordinates
• Cartesian coordinates (−∞ < x1 < ∞ , −∞ < x2 < ∞ , −∞ < x3 < ∞)
h1 = h2 = h3 = 1
ds2 = dx21 + dx22 + dx23
d3 x = dx1 dx2 dx3
• Cylindrical coordinates (0 ≤ ρ < ∞ , 0 ≤ ϕ < 2π , −∞ < z < ∞)
x1 = ρ cos ϕ , x2 = ρ sin ϕ , x3 = z
hρ = hz = 1 , hϕ = ρ
ds2 = dρ2 + ρ2 dϕ2 + dz 2
d3 x = ρ dρ dϕ dz
• Spherical coordinates (0 ≤ r < ∞ , 0 ≤ θ ≤ π , 0 ≤ ϕ < 2π)
x1 = r sin θ cos ϕ , x2 = r sin θ sin ϕ , x3 = r cos θ
hr = 1 , hθ = r , hϕ = r sin θ
ds2 = dr2 + r2 dθ2 + r2 sin θ2 dϕ2
d3 x = r2 dr sin θ dθ dϕ = r2 dr d cos θ dϕ ≡ r2 dr dΩ
• Parabolic cylindrical coordinates
parametrization in Mathematica (0 ≤ u < ∞ , 0 ≤ v < ∞ , −∞ < z < ∞)
1
x1 = (u2 − v 2 ) , x2 = u v , x3 = z
2
√
h u = h v = u2 + v 2 , h z = 1
ds2 = (u2 + v 2 ) (du2 + dv 2 ) + dz 2
d3 x = (u2 + v 2 ) du dv dz
parametrization of Arfken (0 ≤ ξ < ∞ , 0 ≤ η < ∞ , −∞ < z < ∞)
x1 ↔ x2 , u → η , v → ξ
• Parabolic coordinates
parametrization of Arfken, Landau/Lifshitz (0 ≤ ξ < ∞ , 0 ≤ η < ∞ , 0 ≤ ϕ < 2π)
x1 =
p
ξ η cos ϕ , x2 =
p
159
1
ξ η sin ϕ , x3 = (ξ − η)
2
1
hξ =
2
s
1
ξ+η
, hη =
ξ
2
s
p
ξ+η
, hϕ = ξ η
η
1ξ +η 2 1ξ +η 2
dξ +
dη + ξη dϕ2
4 ξ
4 η
1
d3 x = (ξ + η) dξ dη dϕ
4
ds2 =
parametrization in Mathematica (0 ≤ u < ∞ , 0 ≤ v < ∞ , 0 ≤ ϕ < 2π)
ξ = u2 , η = v 2 ,
1
x1 = u v cos ϕ , x2 = u v sin ϕ , x3 = (u2 − v 2 )
2
√
hu = hv = u2 + v 2 , hϕ = uv
ds2 = (u2 + v 2 ) (du2 + dv 2 ) + uv dϕ2
d3 x = uv(u2 + v 2 ) du dv dϕ
160
A.3
Vector operations in orthogonal coordinates
Gradient
The length element along coordinate line ξ1 is h1 dξ1
−→
∇ψ =
eξ1 · gradψ = eξ1 · ∇ψ =
1 ∂ψ
h1 ∂ξ1
1 ∂ψ
1 ∂ψ
1 ∂ψ
eξ1 +
eξ2 +
eξ
h1 ∂ξ1
h2 ∂ξ2
h3 ∂ξ3 3
⇒ form of the nabla operator
∇=
3
X
eξ i
i=1
1 ∂
hi ∂ξi
Divergence and Laplacian
Use the divergence definition
1
∇ · A = lim
∆V →0 ∆V
with
I
S
A · n da
A = A1 (ξ1 , ξ2 , ξ3 ) eξ1 + A2 (ξ1 , ξ2 , ξ2 ) eξ1 + A3 (ξ1 , ξ2 , ξ3 ) eξ3
and choose as volume ∆V an elementary rectangular box of sides h1 ∆ξ1 h2 ∆ξ2 h3 ∆ξ3
Analogously to the derivation in Cartesian coordinates (compare Chapter 1.2) we calculate
the net outward flux in direction of coordinate line ξ1 divided by the volume:
lim A1 (ξ1 + ∆ξ1 , ξ2 , ξ3 ) h2 (ξ1 + ∆ξ1 , ξ2 , ξ3 )∆ξ2 h3 (ξ1 + ∆ξ1 , ξ2 , ξ3 )∆ξ3 −
∆V →0
A1 (ξ1 , ξ2 , ξ3 ) h2 (ξ1 , ξ2 , ξ3 )∆ξ2 h3 (ξ1 , ξ2 , ξ3 )∆ξ3 /(h1 ∆ξ1 h2 ∆ξ2 h3 ∆ξ3 )
1
∂
(h2 h3 A1 )
→
h1 h2 h3 ∂ξ1
⇒ we get for the divergence
1
∇·A=
h1 h2 h3
∂
∂
∂
(h2 h3 A1 ) +
(h3 h1 A2 ) +
(h1 h2 A3 )
∂ξ1
∂ξ2
∂ξ3
The Laplacian operator follows (∇2 = ∇2 = ∆):
1
∆=
h1 h2 h3
∂
∂ξ1
h2 h3 ∂
h1 ∂ξ1
∂
+
∂ξ2
161
h3 h1 ∂
h2 ∂ξ2
∂
+
∂ξ3
h1 h2 ∂
h3 ∂ξ3
Curl
Using a similar derivation as in Cartesian coordinates we get for the curl of vector A
∂
∂
1
(h3 A3 ) −
(h2 A2 ) eξ1 + cyclic permutations
∇×A=
h2 h3 ∂ξ2
∂ξ3
Representation as determinant:
h 1 eξ 1 h 2 eξ2 h 3 eξ 3
1
∂
∂
∂
∇×A=
h1 h2 h3 ∂ξ1
∂ξ2
∂ξ3
h1 A1 h2 A2 h3 A3
162
A.4
Some explicit forms of vector operations
Cartesian coordinates (x1 , x2 , x3 ) with base vectors e1 , e2 , e3
∂ψ
∂ψ
∂ψ
e1 +
e2 +
e3
∂x1
∂x2
∂x3
∂A1 ∂A2 ∂A3
∇·A =
+
+
∂x1
∂x2
∂x
3 ∂A1 ∂A3
∂A2 ∂A1
∂A3 ∂A2
∇×A =
e1 +
e2 +
e3
−
−
−
∂x2
∂x3
∂x3
∂x1
∂x1
∂x2
∂ 2ψ ∂ 2ψ ∂ 2ψ
∆ψ =
+
+
∂x21
∂x22
∂x23
∇ψ =
Cylindrical coordinates (ρ, ϕ, z) with base vectors eρ , eϕ , ez
1 ∂ψ
∂ψ
∂ψ
eρ +
eϕ +
ez
∂ρ
ρ ∂ϕ
∂z
1 ∂
1 ∂Aϕ ∂Az
∇·A =
(ρ Aρ ) +
+
ρ ∂ρ
ρ ∂ϕ
∂z
∂Aρ
1
∂Aρ ∂Az
∂
1 ∂Az ∂Aϕ
−
−
(ρ Aϕ ) −
eρ +
eϕ +
ez
∇×A =
ρ ∂ϕ
∂z
∂z
∂ρ
ρ ∂ρ
∂ϕ
1 ∂
∂ψ
1 ∂ 2ψ ∂ 2ψ
∆ψ =
+ 2
ρ
+ 2
ρ ∂ρ
∂ρ
ρ ∂ϕ2
∂z
∇ψ =
Spherical coordinates (r, θ, ϕ) with base vectors er , eθ , eϕ
∇ψ =
∇·A =
∇×A =
+
∆ψ =
1 ∂ψ
1 ∂ψ
∂ψ
er +
eθ +
eϕ
∂r
r ∂θ
r sin θ ∂ϕ
1 ∂ 2
∂
1
1 ∂Aϕ
(r Ar ) +
(sin θ Aθ ) +
2
r ∂r
r sin θ ∂θ
r sin θ ∂ϕ
∂
∂Aθ
1
er
(sin θ Aϕ ) −
r sin θ ∂θ
∂ϕ
1 ∂Ar 1 ∂
1 ∂
∂Ar
−
(r Aϕ ) eθ +
(r Aθ ) −
eϕ
r sin θ ∂ϕ
r ∂r
r ∂r
∂θ
1 ∂
∂ 2ψ
1
∂
∂ψ
1
2 ∂ψ
r
+
sin
θ
+
r2 ∂r
∂r
r2 sin θ ∂θ
∂θ
r2 sin2 θ ∂ϕ2
Note
1 ∂
r2 ∂r
∂ψ
r
∂r
2
≡
163
1 ∂2
(r ψ)
r ∂r2
A.5
Relation between unit base vectors and their time
derivatives
Relation between the local unit base vectors of cylindrical coordinates eρ (t), eϕ (t), ez and
their time derivatives and the global constant unit base vectors of Cartesian coordinates
e1 , e2 , e3
eρ = cos ϕ e1 + sin ϕ e2
eϕ = − sin ϕ e1 + cos ϕ e2
ez = e3
e1 = cos ϕ eρ − sin ϕ eϕ
e2 = sin ϕ eρ + cos ϕ eϕ
e3 = ez
e˙ ρ = − sin ϕ ϕ˙ e1 + cos ϕ ϕ˙ e2 = ϕ˙ eϕ
e˙ ϕ = −ϕ˙ eρ
e˙ z = 0
e˙ 1 = 0
e˙ 2 = 0
e˙ 3 = 0
Same for the local unit base vectors of spherical coordinates er (t), eθ (t), eϕ (t) and their
time derivatives
er = sin θ cos ϕ e1 + sin θ sin ϕ e2 + cos θ e3
eθ = cos θ cos ϕ e1 + cos θ sin ϕ e2 − sin θ e3
eϕ = − sin ϕ e1 + cos ϕ e2
e1 = sin θ cos ϕ er + cos θ cos ϕ eθ − sin ϕ eϕ
e2 = sin θ sin ϕ er + cos θ sin ϕ eθ + cos ϕ eϕ
e3 = cos θ er − sin θ eθ
e˙ r = θ˙ eθ + sin θ ϕ˙ eϕ
e˙ θ = −θ˙ er + cos θ ϕ˙ eϕ
e˙ ϕ = −ϕ˙ (sin θ er + cos θ eθ )
Relation between the local unit base vectors eρ (t), eϕ (t), ez and er (t), eθ (t), eϕ (t)
eρ = sin θ er + cos θ eθ
e ϕ = eϕ
ez = cos θ er − sin θ eθ
er = sin θ eρ + cos θ ez
eθ = cos θ eρ − sin θ ez
eϕ = eϕ
164