High Performance Reinforcements Delivering Performance, Enabling Possibilities Owens Corning At A Glance • Founded in 1938, an industry leader in glass fiber insulation, roofing, asphalt, and glass fiber reinforcements • 2008 Sales: $5.8 billion • 18,000 employees in 26 countries • FORTUNE 500 company for 54 consecutive years • A FORTUNE Most Admired Company for six consecutive years • Headquarters: Toledo, Ohio Leading North American Market Positions • • • • • Residential Insulation Commercial & Industrial Insulation Global Leader • Glass Fiber Reinforcement Materials for Composites Manufactured Stone Veneer Residential Shingles Roofing Asphalts The Pink Panther™ © 1964-2008 Metro-Goldwyn-Mayer Studios Inc. All Rights Reserved. The color PINK is a registered trademark of Owens Corning. ©2008 Owens Corning. 2 Owens Corning in Composites • Commercialized glass fibers in 1938 • Pioneered the use of glass as a reinforcement in composites • Instrumental in developing composite applications – Roofing, Marine, Tub/Shower, Underground Storage Tanks, Auto & Truck Body Panels, Muffler Packing Systems • Continues our legacy of innovation and transformation today – High Performance Armor, Pressure Vessels, Cable Stiffeners, Rubber Reinforcements. Owens Corning is the leading global supplier of glass reinforcements to the composites industry 3 Innovations in Glass Melting Technologies • 1939: OCV invented E-glass – Boron added to glass for electrical properties • 1968: OCV developed S-2 Glass® – – High Performance Glass (high melting power needed) Small capacity furnaces due to limits in melting technologies • 1980: OCV developed ECR Glass® – Corrosion resistant glass. • 1997: OCV developed Advantex® Glass and Technology – – – Boron free E-glass (higher melting power than traditional E-Glass) ECR-glass (Superior corrosion resistance to traditional E-glass) Breakthrough in melting technology for large capacity furnaces • 2006: OCV developed High Performance Glass (HPG) Technology – – Combines High-Performance Glass and Melting Technology Production of High-Performance Glass in large capacity furnaces • 2008: OCV developed new S-glass formulation based on HPG technology – – Boron-free glass formulation that meets all international standards for S-glass • ASTM C-162, DIN 1259, ISO 2078, ASTM D578, and JIS R3410 standards. Resulting in -> Lower Cost, Increased Capacity, Higher Fiber Homogeneity 4 OCV HPR : An Enabling Technologies for Markets Market Glass Composition Advantex® Glass R - Glass Wind Energy Defense Industrial S - Glass • OCV HP HPR R Product Brands: Brands: • FliteStrand® Reinforcements - Aerospace • ShieldStrand® Reinforcements - Defense • XStrand® Reinforcements - Industrial • WindStrand® Reinforcements - Windstrand Infrastructure & Leisure Aerospace End Use Applications www.ocvreinforcements.com/hp 5 XStrand® S High Performance Reinforcements Delivering Performance, Enabling Possibilities Industrial, Infrastructure, Sports and Leisure Markets OCV XStrand® S Delivering performance, enabling composite possibilities XStrand® S versus E-Glass: • Up to 50% stronger, 20% stiffer and up to 80% tougher • Up to 30% lower coefficient of linear thermal expansion • Improved impact strength • Up to 10X improvement in fatigue strength • Provides significantly improve corrosion resistance • Potential to save up to 30% in weight XStrand® S versus Steel, Aluminum & Carbon Fiber •Up to one-half the weight of steel and up to 40% lighter than aluminum •Superior corrosion resistance compared to metals •Superior impact resistance compared with carbon fiber solutions •Up to one half the cost of carbon fiber solutions •Provides opportunities for part consolidation, reducing weight and assembly A balanced Solution: Expanding the markets for Composites 7 XStrand® S and XStrand® offer superior mechanical properties compared to E-Glass Property Test Method Pristine Fiber Tensile ASTM D2101 Strength Impregnated Fiber Tensile Strength ASTM D2343 Young's Modulus Sonic Resonance @ 20C Density Units E-Glass XStrand® XStrand® S Gpa 3.45-3.79 4.58 5.11-5.30 KSI 500-550 664 741-769 Gpa 1.99-2.48 3.17-3.48 3.41-3.83 KSI 290-360 460-505 495-555 Gpa 68.9-72.4 87 88 MSI 10-10.5 12.6 12.7 g/cc 2.55-2.58 2.55 2.45 lb/in^3 0.092-0.093 0.0921 0.0885 ASTM C693 Specific Pristine Tensile Strength Calculated meters 1.36-1.5 x10^5 1.83 x10^5 2.01-2.12 x10^5 Specific Tensile Modulus Calculated meters 2.73-2.85x10^6 3.49x10^6 3.67x10^6 XStrand® S and XStrand® reinforcements are readily available globally, produced on a large scale using OCV innovative breakthrough glass fiber technology. 8 Fiber Specific Tensile Modulus Comparisons Fiber Specific Tensile Modulus 10^8 in Specific Fiber Tensile Modulus 10^8 in 6.00 5.0769 5.00 4.00 3.6538 3.00 2.00 1.453 1.433 1.36 1.127 1.232 Advantex Std E glass 1.00 0.00 AS4 Carbon K49 Aramid Competitive OCV S glass S glass OCV R glass Glass Type Owens Corning high performance reinforcements deliver same level of specific tensile modulus as other Commercially available S glasses 9 Fiber Specific Tensile Strength Comparisons Specific Fiber Tensile Strength 10^6 in Fiber Specific Tensile Strength 10^6in 12 10 8 9.62 8.92 8.427 7.82 7.22 5.73 6 5.37 4 2 0 K49 Aramid AS4 Carbon OCV S glass Competitive OCV R glass S glass Advantex E glass yarn Glass Type Owens Corning high performance reinforcements deliver same level of specific tensile strength as other Commercially available S glasses 10 T ypical Stress-Strain Curv es of Fibers 6000 MPa S Glass H S C arbon Aramid iPer-tex RH Glass 4000 Advantex E Glass 2000 0 -4.0 -2.0 0.0 2.0 4.0 6.0 % -2000 -4000 OCV high performance S glass fiber provide stronger fibers for better impact resistance and toughness 11 XStrand® S- Superior Corrosion Resistance Strength Retention% vs pH, 24 hrs at 96C Strength Retention (% ) 100 80 60 40 20 OCV S-Glass Competitive S-glass Std E-glass 0 0 2 4 6 8 10 12 pH OCV high performance S glass fiber provide superior performance in acid and alkaline environments. 12 XStrand® S: An Enabling Technology for Pressure Vessels • Offers excellent impact and damage resistance when used as protective layer in carbon-glass hybrid solutions • Combine or replace portion of carbon fiber to provide a balanced cost and weight solution. • Reduce weight and improve corrosion resistance versus metal and all solutions. • Provides opportunity for cost savings on material, less fiber and/or less expensive resin systems • Possibility to replace carbon fiber with all S-glass solution. Type 4 – 190 liter CNG Cylinder: • XStrand® reinforcement enables up to 40% cost reduction versus Carbon/ Epoxy type 4 solution but with weight penalty. • XStrand® cylinder is half the weight of a typical steel tank and up to 20% lighter than equivalent E glass solution at similar cost (saving in resin and manufacturing time). XStrand® S Steel Aluminum Aramid Carbon + -- - ++ +++ ++ +++ +++ - -- Structural Capability + +++ ++ - ++++ Impact + +++ ++ + --- ++ -- - + ++ XStrand® Weight Cost Resistance Corrosion resistance 13 XStrand® S: An enabling technology, making new to market applications possible • Offers opportunity for improved strength, stiffness and fatigue resistance • Enables lighter weight, better corrosion resistance and durability. • Enables better impact, improved wear resistance and increased toughness 14 XStrand® S Glass Product Forms • Assembled, Single End Rovings and Fabrics • Inside and outside pull packages. • Multi-compatible, epoxy and thermoplastic compatible sizings. • Filament size ranges from 9 micron to 24 micron • Tex Range: 300 to 2400 tex depending on roving style selected. P ro d u c t O ffe rin g s X S T R A N D ® S R O V IN G S E P X -S 1 0 E P X -S 1 0 E P X -S 1 0 E P X -S 1 0 E P X -S 1 0 E P X -S 1 5 E P X -S 1 5 E P X -S 1 5 M C X-S 21 M C X-S 21 M C X-S 21 M C X-S 21 M C X-S 21 E P X -S 1 5 E P X -S 1 5 E P X -S 1 5 E P X -S 1 5 R E S IN C O M P AT IB IL IT Y E poxy E poxy E poxy E poxy E poxy E poxy E poxy E poxy P o ly e ste r, V E , E P P o ly e ste r, V E , E P P o ly e ste r, V E , E P P o ly e ste r, V E , E P P o ly e ste r, V E , E P E poxy E poxy E poxy E poxy N O M IN A L F IB E R D IA M E T E R (µ) 1 2µ (J/K fib e r) 1 7 µ (N fib e r) 1 7 µ (N fib e r) 1 7 µ (N fib e r) 2 4 µ (U fib e r) 9 µ (G fib er) 1 7 µ (N fib e r) 1 7 µ (N fib e r) 1 2µ (J/K fib e r) 1 7 µ (N fib e r) 1 7 µ (N fib e r) 1 7 µ (N fib e r) 2 4 µ (U fib e r) 9 µ (G fib er) 1 7 µ (N fib e r) 1 7 µ (N fib e r) 1 2µ (J/K fib e r) B A R E G L AS S T E X (g /k m ) 3 0 0 T E X (1 6 54 y d /lb) 6 0 0 T E X (8 2 6 yd /lb s) 1 2 0 0 T E X (4 13 y d /lb) 2 4 0 0 T E X (2 07 y d /lb) 2 4 0 0 T E X (2 07 y d /lb) 3 6 0 T E X (1 3 7 8 y d /lb) 1 2 0 0 T E X (4 13 y d /lb) 2 4 0 0 T E X (2 07 y d /lb) 3 0 0 T E X (1 6 54 y d /lb) 6 0 0 T E X (8 2 6 yd /lb ) 1 2 0 0 T E X (4 13 y d /lb) 2 4 0 0 T E X (2 07 y d /lb) 2 4 0 0 T E X (2 07 y d /lb) 3 6 0 T E X (1 3 7 8 y d /lb) 1 2 0 0 T E X (4 13 y d /lb) 2 4 0 0 T E X (2 07 y d /lb) 6 6 0 T E X (7 5 1 yd /lb s) 15 Table of Properties Property Test Method Unit E-Glass OCV S-Glass Competitive SGlass Fiber and Bulk Glass Properties Density ASTM C693 Refractive Index (bulk annealed) ASTM C1648 Conductivity Pristine Fiber Tensile Strength Specific Pristine Strength 3 2.55-2.58 2.45 2.46-2.49 1.547-1.562 1.522 1.520-1.525 ASTM C177 watts/m•K 1.0-1.3 1.34 1.1-1.4 ASTM D2101 MPa 3450-3790 4826-5081 4830-5205 Calculation × 10 m GPa 1.36-1.50 2.01-2.12 1.98-2.13 69-72 88 86-90 2.73-2.85 3.67 3.52-3.69 4.8 5.5 5.4 Young's Modulus Specific Modulus g/cm - Calculation Elongation at Break 5 6 × 10 m % Thermal Properties Coefficient of Thermal Expansion, 23-300 °C ASTM D 696 Specific Heat @ 23 °C ASTM C832 -6 × 10 cm/cm•°C kJ/kg•K 5.4 3.4 0.807 0.810 2.8 0 .737 Fiber Tensile Strength v. Temperature Pristine Fiber Tensile Strength, -196 °C ASTM D210 1 MPa 5310 7826 7970-8270 Pristine Fiber Tensile Strength, 22 °C ASTM D2101 M Pa 3450-3790 5047 4830-5137 ASTM D2101 MPa 3496 4849 5155 ASTM D2101 MPa 371 4173 3556 Initial pH=4 (HCl + H2O) ASTM D2101 MPa 3032 4706 4525 2114 Fiber Tensile Strength v. pH, 24 hours @ 96 °C (load/initial area) Air Initial pH=1 (HCl + H2O) Initial pH=7 (H2O) ASTM D2101 MPa 2499 3790 Initial pH=9 (NaOH + H2O) ASTM D2101 MPa 2647 2743 2134 Initial pH=11 (NaOH + H2O) ASTM D2101 MPa 1884 1781 1456 Fiber Weight Retention v. pH, 24 hours @ 96 °C Initial pH=1 (HCl + H2O) % 69.25 97.23 94.18 Initial pH=4 (HCl + H2O) % 98.79 98.67 99.37 Initial pH=7 (H2O) % 98.71 98.51 99.20 Initial pH=9 (NaOH + H2O) % 98.88 98.27 99.05 % 98.47 97.63 97.52 3268-3868 Initial pH=11 (NaOH + H2O) 1 Impregnated Strand Tensile Strength 2 and Shear Properties ASTM D2343 MPa 2000-2500 3410-3830 Tensile Modulus ASTM D2343 GPa 78-80 86.9-95.8 91-92 Toughness ASTM D2343 MPa 37 82-90 66-91 Shear Strength (NOL Ring) - Dry ASTM D2344 MPa 52.2 70.7 63.1 Shear Strength (NOL Ring) - 96 Hour Boil ASTM D2344 MPa 46.9 62.3 54.0 ASTM D3039 MPa 889-1013 1503-1538 1420-1448 ASTM D3039 GPa 41-44 50-55 48-54 ASTM D638 - 0.29 0.27 0.26 Resin Content by Weight ASTM D2584 % 26-30 25-28 26 Fiber Volume Fraction ASTM D2734 % 49-55 55-58 53-56 ASTM D3763 J 56.9 60.2 56.5 2 Unidirectional Composite Properties Tensile Strength Tensile Modulus Poisson's Ratio 2 Biaxial Composite Properties Instrumented Impact - Total Energy (Vf = 0.74) 1 2 Hexion MGS RIM 135 epoxy resin + RIMH 137 hardener Hexion Epon 826 epoxy resin + Albemarle Ethacure 100 hardener 16
© Copyright 2024 ExpyDoc