High Performance Reinforcements

High Performance Reinforcements
Delivering Performance, Enabling Possibilities
Owens Corning At A Glance
• Founded in 1938, an industry leader in glass
fiber insulation, roofing, asphalt, and glass fiber
reinforcements
• 2008 Sales: $5.8 billion
• 18,000 employees in 26 countries
• FORTUNE 500 company for 54 consecutive
years
• A FORTUNE Most Admired Company for six
consecutive years
• Headquarters: Toledo, Ohio
Leading North American
Market Positions
•
•
•
•
•
Residential Insulation
Commercial & Industrial Insulation
Global Leader
•
Glass Fiber Reinforcement
Materials for Composites
Manufactured Stone Veneer
Residential Shingles
Roofing Asphalts
The Pink Panther™ © 1964-2008 Metro-Goldwyn-Mayer Studios Inc. All Rights Reserved.
The color PINK is a registered trademark of Owens Corning. ©2008 Owens Corning.
2
Owens Corning in Composites
• Commercialized glass fibers in 1938
• Pioneered the use of glass as a reinforcement in
composites
• Instrumental in developing composite applications
– Roofing, Marine, Tub/Shower, Underground Storage
Tanks, Auto & Truck Body Panels, Muffler Packing
Systems
• Continues our legacy of innovation and
transformation today
– High Performance Armor, Pressure Vessels, Cable
Stiffeners, Rubber Reinforcements.
Owens Corning is the leading global supplier of glass
reinforcements to the composites industry
3
Innovations in Glass Melting Technologies
• 1939: OCV invented E-glass
–
Boron added to glass for electrical properties
• 1968: OCV developed S-2 Glass®
–
–
High Performance Glass (high melting power needed)
Small capacity furnaces due to limits in melting technologies
• 1980: OCV developed ECR Glass®
–
Corrosion resistant glass.
• 1997: OCV developed Advantex® Glass and Technology
–
–
–
Boron free E-glass (higher melting power than traditional E-Glass)
ECR-glass (Superior corrosion resistance to traditional E-glass)
Breakthrough in melting technology for large capacity furnaces
• 2006: OCV developed High Performance Glass (HPG)
Technology
–
–
Combines High-Performance Glass and Melting Technology
Production of High-Performance Glass in large capacity furnaces
• 2008: OCV developed new S-glass formulation based on HPG
technology
–
–
Boron-free glass formulation that meets all international standards for S-glass
• ASTM C-162, DIN 1259, ISO 2078, ASTM D578, and JIS R3410 standards.
Resulting in -> Lower Cost, Increased Capacity, Higher Fiber Homogeneity
4
OCV HPR : An Enabling Technologies for Markets
Market
Glass Composition
Advantex®
Glass
R - Glass
Wind Energy
Defense
Industrial
S - Glass
•
OCV HP
HPR
R Product Brands:
Brands:
•
FliteStrand® Reinforcements - Aerospace
•
ShieldStrand® Reinforcements - Defense
•
XStrand® Reinforcements - Industrial
•
WindStrand® Reinforcements - Windstrand
Infrastructure
& Leisure
Aerospace
End Use Applications
www.ocvreinforcements.com/hp
5
XStrand® S High Performance Reinforcements
Delivering Performance, Enabling Possibilities
Industrial, Infrastructure, Sports and Leisure Markets
OCV XStrand® S
Delivering performance, enabling composite possibilities
XStrand® S versus E-Glass:
• Up to 50% stronger, 20% stiffer and up to 80% tougher
• Up to 30% lower coefficient of linear thermal expansion
• Improved impact strength
• Up to 10X improvement in fatigue strength
• Provides significantly improve corrosion resistance
• Potential to save up to 30% in weight
XStrand® S versus Steel, Aluminum & Carbon Fiber
•Up to one-half the weight of steel and up to 40% lighter than aluminum
•Superior corrosion resistance compared to metals
•Superior impact resistance compared with carbon fiber solutions
•Up to one half the cost of carbon fiber solutions
•Provides opportunities for part consolidation, reducing weight and assembly
A balanced Solution:
Expanding the markets for Composites
7
XStrand® S and XStrand® offer superior
mechanical properties compared to E-Glass
Property
Test Method
Pristine Fiber Tensile
ASTM D2101
Strength
Impregnated Fiber
Tensile Strength
ASTM D2343
Young's Modulus
Sonic
Resonance
@ 20C
Density
Units
E-Glass
XStrand®
XStrand® S
Gpa
3.45-3.79
4.58
5.11-5.30
KSI
500-550
664
741-769
Gpa
1.99-2.48
3.17-3.48
3.41-3.83
KSI
290-360
460-505
495-555
Gpa
68.9-72.4
87
88
MSI
10-10.5
12.6
12.7
g/cc
2.55-2.58
2.55
2.45
lb/in^3
0.092-0.093
0.0921
0.0885
ASTM C693
Specific Pristine
Tensile Strength
Calculated
meters
1.36-1.5 x10^5
1.83 x10^5
2.01-2.12 x10^5
Specific Tensile
Modulus
Calculated
meters
2.73-2.85x10^6
3.49x10^6
3.67x10^6
XStrand® S and XStrand® reinforcements are readily available globally,
produced on a large scale using OCV innovative breakthrough glass fiber
technology.
8
Fiber Specific Tensile Modulus Comparisons
Fiber Specific Tensile Modulus 10^8 in
Specific Fiber Tensile Modulus 10^8 in
6.00
5.0769
5.00
4.00
3.6538
3.00
2.00
1.453
1.433
1.36
1.127
1.232
Advantex
Std E glass
1.00
0.00
AS4 Carbon K49 Aramid Competitive OCV S glass
S glass
OCV R
glass
Glass Type
Owens Corning high performance reinforcements
deliver same level of specific tensile modulus as other
Commercially available S glasses
9
Fiber Specific Tensile Strength Comparisons
Specific Fiber Tensile Strength 10^6 in
Fiber Specific Tensile Strength 10^6in
12
10
8
9.62
8.92
8.427
7.82
7.22
5.73
6
5.37
4
2
0
K49 Aramid AS4 Carbon OCV S glass Competitive OCV R glass
S glass
Advantex
E glass yarn
Glass Type
Owens Corning high performance reinforcements
deliver same level of specific tensile strength as other
Commercially available S glasses
10
T ypical Stress-Strain Curv es of Fibers
6000 MPa
S Glass
H S C arbon
Aramid
iPer-tex
RH Glass
4000
Advantex
E Glass
2000
0
-4.0
-2.0
0.0
2.0
4.0
6.0 %
-2000
-4000
OCV high performance S glass fiber provide stronger fibers
for better impact resistance and toughness
11
XStrand® S- Superior Corrosion Resistance
Strength Retention% vs pH, 24 hrs at 96C
Strength Retention (% )
100
80
60
40
20
OCV S-Glass
Competitive S-glass
Std E-glass
0
0
2
4
6
8
10
12
pH
OCV high performance S glass fiber provide superior
performance in acid and alkaline environments.
12
XStrand® S: An Enabling Technology for Pressure Vessels
• Offers excellent impact and
damage resistance when
used as protective layer in
carbon-glass hybrid solutions
• Combine or replace portion of
carbon fiber to provide a
balanced cost and weight
solution.
• Reduce weight and improve
corrosion resistance versus
metal and all solutions.
• Provides opportunity for cost
savings on material, less fiber
and/or less expensive resin
systems
• Possibility to replace carbon
fiber with all S-glass solution.
Type 4 – 190 liter CNG Cylinder:
• XStrand® reinforcement enables up to 40% cost reduction versus Carbon/ Epoxy type 4 solution but with
weight penalty.
• XStrand® cylinder is half the weight of a typical steel tank and up to 20% lighter than equivalent E glass
solution at similar cost (saving in resin and manufacturing time).
XStrand® S
Steel
Aluminum
Aramid
Carbon
+
--
-
++
+++
++
+++
+++
-
--
Structural
Capability
+
+++
++
-
++++
Impact
+
+++
++
+
---
++
--
-
+
++
XStrand®
Weight
Cost
Resistance
Corrosion
resistance
13
XStrand® S: An enabling technology, making new
to market applications possible
• Offers opportunity for improved
strength, stiffness and fatigue
resistance
• Enables lighter weight, better
corrosion resistance and
durability.
• Enables better impact, improved
wear resistance and increased
toughness
14
XStrand® S Glass Product Forms
• Assembled, Single End Rovings and Fabrics
• Inside and outside pull packages.
• Multi-compatible, epoxy and thermoplastic compatible sizings.
• Filament size ranges from 9 micron to 24 micron
• Tex Range: 300 to 2400 tex depending on roving style selected.
P ro d u c t O ffe rin g s
X S T R A N D ® S R O V IN G S
E P X -S 1 0
E P X -S 1 0
E P X -S 1 0
E P X -S 1 0
E P X -S 1 0
E P X -S 1 5
E P X -S 1 5
E P X -S 1 5
M C X-S 21
M C X-S 21
M C X-S 21
M C X-S 21
M C X-S 21
E P X -S 1 5
E P X -S 1 5
E P X -S 1 5
E P X -S 1 5
R E S IN C O M P AT IB IL IT Y
E poxy
E poxy
E poxy
E poxy
E poxy
E poxy
E poxy
E poxy
P o ly e ste r, V E , E P
P o ly e ste r, V E , E P
P o ly e ste r, V E , E P
P o ly e ste r, V E , E P
P o ly e ste r, V E , E P
E poxy
E poxy
E poxy
E poxy
N O M IN A L F IB E R D IA M E T E R (µ)
1 2µ (J/K fib e r)
1 7 µ (N fib e r)
1 7 µ (N fib e r)
1 7 µ (N fib e r)
2 4 µ (U fib e r)
9 µ (G fib er)
1 7 µ (N fib e r)
1 7 µ (N fib e r)
1 2µ (J/K fib e r)
1 7 µ (N fib e r)
1 7 µ (N fib e r)
1 7 µ (N fib e r)
2 4 µ (U fib e r)
9 µ (G fib er)
1 7 µ (N fib e r)
1 7 µ (N fib e r)
1 2µ (J/K fib e r)
B A R E G L AS S T E X (g /k m )
3 0 0 T E X (1 6 54 y d /lb)
6 0 0 T E X (8 2 6 yd /lb s)
1 2 0 0 T E X (4 13 y d /lb)
2 4 0 0 T E X (2 07 y d /lb)
2 4 0 0 T E X (2 07 y d /lb)
3 6 0 T E X (1 3 7 8 y d /lb)
1 2 0 0 T E X (4 13 y d /lb)
2 4 0 0 T E X (2 07 y d /lb)
3 0 0 T E X (1 6 54 y d /lb)
6 0 0 T E X (8 2 6 yd /lb )
1 2 0 0 T E X (4 13 y d /lb)
2 4 0 0 T E X (2 07 y d /lb)
2 4 0 0 T E X (2 07 y d /lb)
3 6 0 T E X (1 3 7 8 y d /lb)
1 2 0 0 T E X (4 13 y d /lb)
2 4 0 0 T E X (2 07 y d /lb)
6 6 0 T E X (7 5 1 yd /lb s)
15
Table of Properties
Property
Test Method
Unit
E-Glass
OCV S-Glass
Competitive SGlass
Fiber and Bulk Glass Properties
Density
ASTM C693
Refractive Index (bulk annealed)
ASTM C1648
Conductivity
Pristine Fiber Tensile Strength
Specific Pristine Strength
3
2.55-2.58
2.45
2.46-2.49
1.547-1.562
1.522
1.520-1.525
ASTM C177
watts/m•K
1.0-1.3
1.34
1.1-1.4
ASTM D2101
MPa
3450-3790
4826-5081
4830-5205
Calculation
× 10 m
GPa
1.36-1.50
2.01-2.12
1.98-2.13
69-72
88
86-90
2.73-2.85
3.67
3.52-3.69
4.8
5.5
5.4
Young's Modulus
Specific Modulus
g/cm
-
Calculation
Elongation at Break
5
6
× 10 m
%
Thermal Properties
Coefficient of Thermal Expansion, 23-300 °C
ASTM D 696
Specific Heat @ 23 °C
ASTM C832
-6
× 10 cm/cm•°C
kJ/kg•K
5.4
3.4
0.807
0.810
2.8
0 .737
Fiber Tensile Strength v. Temperature
Pristine Fiber Tensile Strength, -196 °C
ASTM D210 1
MPa
5310
7826
7970-8270
Pristine Fiber Tensile Strength, 22 °C
ASTM D2101
M Pa
3450-3790
5047
4830-5137
ASTM D2101
MPa
3496
4849
5155
ASTM D2101
MPa
371
4173
3556
Initial pH=4 (HCl + H2O)
ASTM D2101
MPa
3032
4706
4525
2114
Fiber Tensile Strength v. pH, 24 hours @ 96 °C
(load/initial area)
Air
Initial pH=1 (HCl + H2O)
Initial pH=7 (H2O)
ASTM D2101
MPa
2499
3790
Initial pH=9 (NaOH + H2O)
ASTM D2101
MPa
2647
2743
2134
Initial pH=11 (NaOH + H2O)
ASTM D2101
MPa
1884
1781
1456
Fiber Weight Retention v. pH, 24 hours @ 96 °C
Initial pH=1 (HCl + H2O)
%
69.25
97.23
94.18
Initial pH=4 (HCl + H2O)
%
98.79
98.67
99.37
Initial pH=7 (H2O)
%
98.71
98.51
99.20
Initial pH=9 (NaOH + H2O)
%
98.88
98.27
99.05
%
98.47
97.63
97.52
3268-3868
Initial pH=11 (NaOH + H2O)
1
Impregnated Strand
Tensile Strength
2
and Shear
Properties
ASTM D2343
MPa
2000-2500
3410-3830
Tensile Modulus
ASTM D2343
GPa
78-80
86.9-95.8
91-92
Toughness
ASTM D2343
MPa
37
82-90
66-91
Shear Strength (NOL Ring) - Dry
ASTM D2344
MPa
52.2
70.7
63.1
Shear Strength (NOL Ring) - 96 Hour Boil
ASTM D2344
MPa
46.9
62.3
54.0
ASTM D3039
MPa
889-1013
1503-1538
1420-1448
ASTM D3039
GPa
41-44
50-55
48-54
ASTM D638
-
0.29
0.27
0.26
Resin Content by Weight
ASTM D2584
%
26-30
25-28
26
Fiber Volume Fraction
ASTM D2734
%
49-55
55-58
53-56
ASTM D3763
J
56.9
60.2
56.5
2
Unidirectional Composite Properties
Tensile Strength
Tensile Modulus
Poisson's Ratio
2
Biaxial Composite Properties
Instrumented Impact - Total Energy (Vf = 0.74)
1
2
Hexion MGS RIM 135 epoxy resin + RIMH 137 hardener
Hexion Epon 826 epoxy resin + Albemarle Ethacure 100 hardener
16