Random constraint satisfaction problems: a point of view from physics Guilhem Semerjian LPT-ENS 29.01.2014 / IAS Guilhem Semerjian (LPT-ENS) 29.01.2014 / IAS 1 / 22 Outline 1 Constraint satisfaction problems 2 Random ensembles of CSP 3 Statistical physics approach and results Guilhem Semerjian (LPT-ENS) 29.01.2014 / IAS 2 / 22 Constraint satisfaction problems : definitions x = (x1 , . . . , xn ) ∈ X n discrete alphabet X ( 1 satisfied m constraints ψa ({xi }i∈∂a ) = 0 unsatisfied n variables solutions S = {x : ψa (x ∂a ) = 1 ∀a} Guilhem Semerjian (LPT-ENS) 29.01.2014 / IAS 3 / 22 Constraint satisfaction problems : examples X = {1, . . . , q} , ψa (xi , xj ) = 11(xi 6= xj ) on the edges a = hi, ji of a graph q-coloring problem X = {True, False} , ψa depends on k variables xia1 , . . . , xiak ψa = 11(zia1 ∨ · · · ∨ zia1 = True) , with zi ∈ {xi , x i } k -satisfiability problem ψa = 11(xia1 ⊕ · · · ⊕ xiak = ya ), with ya ∈ {True, False} k -xor-satisfiability problem Guilhem Semerjian (LPT-ENS) 29.01.2014 / IAS 4 / 22 Constraint satisfaction problems For a given instance (formula/graph), several questions : decision problem, is |S| > 0 ? (said satisfiable if yes) counting problem, what is |S| ? optimization problem, P what is max ψa (x) ? x a Worst-case complexity of the decision problem: k -xor-satisfiability easy (P) for all k k -satisfiability, q-coloring difficult (NP-complete) for k , q ≥ 3 Guilhem Semerjian (LPT-ENS) 29.01.2014 / IAS 5 / 22 Random constraint satisfaction problems What about their “typical case” complexities ? “typical”= with high probability in some random ensemble of instances Examples : coloring Erdös-Rényi random graphs G(n, m) choose m edges uniformly at random in the n2 possible ones random (xor)satisfiability ensembles choose m hyperedges (k -uplets of variables), among n k Most interesting regime : n, m → ∞ with α = m/n fixed Guilhem Semerjian (LPT-ENS) 29.01.2014 / IAS 6 / 22 Random constraint satisfaction problems Pn,α = P[random problem with n variables and m = αn constraints is satisfiable] Obvious observations : Pn,α decreases with α lim Pn,α = 0 for α large enough n→∞ First moment proof (for k -sat) : " Pn,α = P[|S| ≥ 1] ≤ E[|S|] = X x E m Y # ψa (x) a=1 1 αn n = 2 1− k →0 2 for α > αub (k ) = 2k ln 2 Guilhem Semerjian (LPT-ENS) 29.01.2014 / IAS 7 / 22 Random constraint satisfaction problems “Experimental” observation : phase transition for 1 − Pn,α associated to a peak in the hardness of solving Guilhem Semerjian (LPT-ENS) 29.01.2014 / IAS 8 / 22 Random constraint satisfaction problems Phase transition conjecture : ∃ αs (k ) such that ( 1 if α < αs (k ) lim Pn,α = n→∞ 0 if α > αs (k ) Weaker version proven : ∃ αs (k , n) such that lim Pn,(1−)αs (k ,n) = 1 , n→∞ [Friedgut] lim Pn,(1+)αs (k ,n) = 0 n→∞ Early rigorous results for random k -satisfiability and q-coloring : upper and lower bounds on αs (k ) [Chao-Franco, Frieze-Suen, Achlioptas, Dubois, Boufkhad...] asymptotics of αs (k ) at large k αs (k ) ≥ 2k ln 2 − k Guilhem Semerjian (LPT-ENS) ln 2 + O(1) 2 [Achlioptas, Moore, Naor, Peres] [Achlioptas, Peres (04)] 29.01.2014 / IAS 9 / 22 Random constraint satisfaction problems But : no precise value of αs (k ) for small k unsatisfactory understanding of algorithmic difficulty at α < αs (k ) Guilhem Semerjian (LPT-ENS) 29.01.2014 / IAS 10 / 22 Why physics ? Statistical mechanics : configuration space x = (x1 , . . . , xn ) energy function E(x) temperature T Gibbs-Boltzmann distribution µ(x) = exp[−E(x)/T ]/Z Low-temperature statistical physics ≈ combinatorial optimization randomness in the distribution of instances ≈ disordered systems (spin glasses) random graphs → mean-field diluted spin glasses graph coloring corresponds to antiferromagnetic Potts model Guilhem Semerjian (LPT-ENS) 29.01.2014 / IAS 11 / 22 Outcomes of the physics approach quantitative estimation of αs (k ) refined picture of the satisfiable phase analysis of known algorithms suggestion of new ones Guilhem Semerjian (LPT-ENS) 29.01.2014 / IAS 12 / 22 Refined picture of the satisfiable phase Exponential number of solutions for α < αs , ∼ exp[ns(α)] Clustering transition at another threshold αd < αs : apparition of an exponential number of clusters (∼ exp[nΣ(α)]), each containing an exponential number of solutions (∼ exp[nsint (α)]) at αs cancellation of Σ(α), not of s(α) Guilhem Semerjian (LPT-ENS) 29.01.2014 / IAS 13 / 22 Refined picture of the satisfiable phase Can be proven rigorously for random xorsat [Creignou, Daudé] [Cocco, Dubois, Mandler, Monasson] [Mézard, Ricci-Tersenghi, Zecchina] At αd , apparition of a 2-core in the hypergraph s(α) = Σ(α) + sint (α) Σ(αs ) = 0 [more complicated picture for sat and col] Guilhem Semerjian (LPT-ENS) 29.01.2014 / IAS 14 / 22 Methods If the formula F has solutions, define µ(x) = 1 Z Q ψa (x ∂a ) uniform measure on S x1 Factor graph representation of a formula : x3 x2 a c x8 b x7 x4 x5 d x6 Crucial property : in the n, m → ∞ limit with α = m/n fixed local convergence of the factor graph to a random Galton-Watson tree Guilhem Semerjian (LPT-ENS) 29.01.2014 / IAS 15 / 22 Methods For a tree factor graph µ(x) is a rather simple object (Belief Propagation is exact) All marginal probabilities can be easily computed recursively : Sparse random graphs converge locally to trees Is it enough for their µ(x) to converge locally to the measure on the associated tree ? It depends... (on the correlations decay) Guilhem Semerjian (LPT-ENS) 29.01.2014 / IAS 16 / 22 Methods Yes in “replica symmetric” cases Ferromagnetic Ising models Matchings Random CSP for α < αd [Dembo, Montanari] [Bordenave, Lelarge, Salez] Removing a finite subtree, the variables at the boundary are asymptotically independent Allows to compute in particular Guilhem Semerjian (LPT-ENS) lim n1 log Z entropy of solutions 29.01.2014 / IAS 17 / 22 Methods No in presence of “replica symmetry breaking” (αd < α < αs ) Configuration space partitioned in clusters ⇒ long-range correlations Removing a finite subtree, the variables at the boundary remains correlated, self-consistent ansatz on these boundary conditions With µ(x) = P wc µc (x), each µc has short-range correlations, c can be treated as above Properties of wc encode the value of Σ(α), hence allows the computation of αs Guilhem Semerjian (LPT-ENS) 29.01.2014 / IAS 18 / 22 Clustering for k -sat and q-col Further “condensation” transition : exponential number of clusters only for α ∈ [αd , αc ] In general αc < αs , for XORSAT they coincide Guilhem Semerjian (LPT-ENS) 29.01.2014 / IAS 19 / 22 Recent rigorous results Physical intuition and heuristic results turned into rigorous proofs Existence of clusters and frozen variables [Achlioptas, Molloy] Improved bounds on αs (k ) at large k 3 ln 2 + o(1) [Coja-Oghlan, Panagiotou (12)] 2 1 + ln 2 αs (k ) = 2k ln 2 − + o(1) [Coja-Oghlan (14)] 2 αs (k ) ≥ 2k ln 2 − independence number of d-regular graphs for large (but finite) d [Ding, Sly, Sun (13)] Guilhem Semerjian (LPT-ENS) 29.01.2014 / IAS 20 / 22 Perspectives Schemes of rigorous proofs: Large k , q results, of combinatorics nature [Achlioptas, Coja-Oghlan] Interpolation method, originally devised for the Sherrington-Kirkpatrick model [Guerra, Toninelli, Aizenman, Talagrand, Panchenko] Local convergence approach [Aldous] done for sparse random graphs in the “replica symmetric” regime open problem in the “replica symmetry breaking” regime Guilhem Semerjian (LPT-ENS) 29.01.2014 / IAS 21 / 22 Short bibliography M. Mézard, G. Parisi and R. Zecchina, Science 297, 812 (2002) S. Mertens, M. Mézard and R. Zecchina, Random Struct. Alg. 28, 340 (2006) F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Semerjian and L. Zdeborova, PNAS 104, 10318 (2007) F. Altarelli, R. Monasson, G. Semerjian and F. Zamponi, in Handbook of Satisfiability, IOS press (2009), arxiv:0802.1829 M. Mézard and A. Montanari, Information, Physics, and Computation, OUP (2009) Guilhem Semerjian (LPT-ENS) 29.01.2014 / IAS 22 / 22
© Copyright 2024 ExpyDoc