스핀전자물성연구실 도중회 Ch. 5 Phonons II : Thermal properties 스핀전자물성연구실 도중회 • 열용량(C :heat capacity) : 계의 온도를 1.0 ºC 높이는데 필요한 열에너지 C dQ dT 계의 열에너지 dQ dU dW dU PdV 뒬롱-프티 법칙 : 대부분의 고체들 : ~25 J/mol K • 에너지 등분배의 원리 : 자유도가 계에 기여하는 에너지의 양은 1 k BT 2 만큼씩이며 자유도에는 병진운동, 회전 운동, 분자의 진동에 의한 것들이 포함된다. 병진운동 z 1 2 회전운동 mv 2 z 1 2 진동운동 Iw 2 z 1 2 kx 2 (예) 이원자 분자 y x 자유도 : 3개 = vx vy vz 3 k BT 2 y x y x 자유도 : 2개 = Ix Iz k BT 자유도 : 2개 = k BT 2 대칭모드, 비대칭모드 스핀전자물성연구실 도중회 Phonon heat capacity U CV T V Heat capacity at constant volume From experiments, CV 3Nk B at room T. CV T (metal) or CV T 3 (insulator) at low T 2 p 1 Classical calculation of specific heat mw02 r 2 E 2m 2 From statistical mechanics, the equipartition theorem states that the mean value of each independent quadratic term in the energy is equal to ½ kBT. In 3D, the total energy for a crystal with NA molecules p x2 p y2 p z2 1 1 E NA mw02 ( x 2 y 2 z 2 ) N A 6 k BT 3 N A k BT 2m 2 2 The heat capacity is C dE 3 N A k B 3R 25 J/mol deg ;Dulong & Petit’s law dT 스핀전자물성연구실 도중회 Plank distribution The total energy of the phonons at a temperature T in a crystal is U lat K P K : wavevector, p : polarization index <nK,p> : thermal equalibrium occupancy of phonons of K and p . nK , p wK , p Ratio of the number of harmonic oscillators in the (n+1) state to the number of in the n state is given by Boltzmann distribution ; N n1 N n exp kBwT where, 1 k BT Average excitation quantum number of an harmonic oscillator n( w) s exp(sw) sx exp( ) s w x s 0 s S s s 0 S where, x exp( w) x S s 1 x x2 x3 1 for x 1 1 x d 1 d x xs x x 1 dx 1 x dx S ; Planck distribution s 1 1 x exp( w ) 1 x S 1 x 스핀전자물성연구실 도중회 Phonon heat capacity Then, the total phonon energy is U lat K wK,p exp(w p K,p / k BT ) 1 dwD p ( w) P w exp(w / k BT ) 1 Dp(w) : density of state = number of modes per unit frequency range for a given polarization The phonon heat capacity is w w e k BT U CV dwD p ( w) k B T 2 w k B T 2 T V 1 e k B x 2e x dwD p ( w) where, x w 2 x k BT e 1 2 2 스핀전자물성연구실 Density of state in 1D Real space K-space L = sa a /L Standing wave solution for fixed ends u s u (0) sin wt sin kx boundary condition For un-fixed ends, sin kL 0 kL n n k L u s u (0)e iwt e iKsa In a solid, periodic boundary condition is u ( sa ) u ( sa L) standing wave for circular ring KL 2n K 0, /a 2 4 N , L L L 도중회 스핀전자물성연구실 도중회 Density of state in 1D u s u (0)e iwt e iKsa For un-fixed ends, In a solid, periodic boundary condition is u ( sa ) u ( sa L) standing wave for circular ring 2 4 N , L L L KL 2n K 0, Density in K-space = 1 / unit mode length in K-space nK 1 1 2 K L L 2 Total number of modes N = Density in K-space length in K-space N L K 2 D ( w) dN Density of state is dw L dK 2 dw 스핀전자물성연구실 도중회 Density of state in 3D Density of states in 3-dimensions L exp iK x x K y y K z z exp iK x ( x L) K y ( y L) K z ( z L) L Kx , Ky , Kz 0, L N 2 4 , , L L L /a Density in K-space = 1 / unit mode volume in K-space nK 1 1 K 3 2 3 L V 8 3 Total number of modes N = Density in K-space total volume in K-space 2/L 4K 3 V N 2 3 3 Density of state is D ( w) dN 2 dw VK 2 dK 2 dw 2 L 2 In 2D, N K 2 AK dK where A L2 D ( w) dN dw 2 dw 스핀전자물성연구실 도중회 Debye model : Phonon heat capacity Debye approximation : dispersion relation of acoustic phonon c = / k 3 3 Vw3D L 4 ( w / c) N 3 6 2 c 3 2 w 6 c N 3 D 2 3 kD V wD Phonon energy is given by WD U 3 D 3 dwD( w)n( w)w 3 0 1L+2 T modes T 9 Nk BT D 3 xD 0 x3 dx x e 1 Then, the heat capacity is If phonons are filled up to wD only Ky 6 N c 2 V 1 3 KD Vw2 w dw 2 3 w 2 c e k BT 1 KT w wd Debye approx. x dw dx kBT c w D kD D xd D kBT T kB w T dx dU dU 9 Nk B CV dT V dT dx D k BT 3 xD 0 dx x 4e x e x Actual Kd 1 Kx 2 스핀전자물성연구실 K 도중회 Debye model vs. Einstein model •Debye approximation at a low T w x3 xD D dx x k BT 0 e 1 CV T dU 12π Nk B dT 5 ΘD 4 at a high T, xD 4 3 T 4 U 3 Nk BT 5 D 15 3 wE 1 e wE 1 wE wD 0 k BT U 3 Nk BT CV 3 Nk B • Einstein model Consider N oscillators of the same frequency wE U 3 D 3 N n wE 3 NwE e wE k BT 1 e wE dU 2 CV Nk w 3 B E 2 dT V e wE 1 at high T CV 3 Nk B at low T wE 1 • In a real system, total heat capacity at low T is CV e wE k BT 스핀전자물성연구실 도중회 Anharmonic crystal interaction The consequences of harmonic theory are : • Two lattice waves do not interact ; a single wave does not decay or change form with time • No thermal expansion. • Adiabatic & isothermal elastic constants are equal. • The elastic constants are independent of pressure and temperature. • The heat capacity becomes constant at high T> No real crystal satisfies above conditions. In a real crystal, anharmonic effect should be considered. - third order or higher order terms in the potential energy U ( x) cx 2 gx 3 fx 4 In the experiments, the interaction of two phonons produces a third phonon at a frequency 3=1+2 스핀전자물성연구실 도중회 Thermal expansion • Thermal expansion of a solid : an increase of the length with the temperature. We may understand thermal expansion by considering for a classical oscillator the effect of anharmonic term in the potential energy. Let’s take a potential energy g: asymmetry of the mutual repulsion of the atoms f :softening of the vibration at large amplitude U ( x) cx 2 gx 3 fx 4 x : a displacement from the equilibrium separation at T=0 Then, the average displacement at T is given by x xe U dx e U dx xe cx e gx 2 fx 4 e cx dx e cx e gx 2 e cx dx xe cx 1 gx 3 fx 4 dx 2 dx 2 3 2 3 fx 4 e cx 1 gx 3 fx 4 2 3g k BT ; Length of a solid temperature. 4c 2 1 3 (n 1)(2a) ( n 1) / 2 ( / 2)1/ 2 for n 0 & even n ax 0 x e dx 2 4 (n 1)(2a) ( n1) / 2 ( / 2)1/ 2 for n 1 & odd 2 The thermal expansion does not involve the symmetric term -fx4, but only the asymmetric term -gx3 스핀전자물성연구실 도중회 Thermal conductivity Q: In insulators, how the energy is transferred from hot region to cold region? A : Energy can diffuse through phonon collisions in a solid. dT T T ( x ) T ( x ) Energy transmitted across unit area per unit time depends on temperature dx gradient dT T dx dT v x dx x T l : mean free path of a particle between collision, : collision time x T+∆T The net flux of energy = Energy transmitted per unit area per unit time ju nvx cΔT n v x2 c ju K n : density, c : heat capacity per particle dT 1 dT 1 dT v 2 nc v 2 C where, C nc 3 3 dx dx dx dT dx 1 K Cv 3 스핀전자물성연구실 도중회 Thermal resistivity of phonon gas The phonon mean free path l is determined by geometrical scattering and scattering by other phonons. i) If purely harmonic, the l is limited by collisions with the crystal boundary and lattice imperfections. ii) If anharmonic, the l is limited by coupling with other phonons and it is proportional to 1/T at high temperature because the number of the excited phonons is proportional to T. • Normal phonon collision source sink K1 K 2 K 3 • Umklapp phonon collision hot cold K1 K 2 K 3 G Phonon flux is unchanged in momentum. Thermal resistivity = 0 Energy conservation : 3=1+2 K1 , K 2 , K 3 : phonons G : reciprocal lattice vector Energy conservation : 3=1+2 Phonon flux is decreased as they moves to the right. Thermal resistivity ≠ 0, Energy transfer ≠ 0
© Copyright 2024 ExpyDoc