Length of a Plane Curve - Arc Length - Classwork % 71 B)3< 45 /0025A)*/41 4<1 (18C4< 5: 4<1 ';2@1 y # x :25* A = , 45 A = % ;3)8C - ()813# \2/B 4<1 - ()813 /89 :)89 4<1)2 (18C4<3 /89 3;* 4<1*# , 45 #$ ]52*;(/ ^^^^^^^^^^^^ &18C4< ^^^^^^^^^ #$ 45 ! ]52*;(/ ^^^^^^^^^^^^ &18C4< ^^^^^^^^^ ! 45 !#$ ]52*;(/ ^^^^^^^^^^^^ &18C4< ^^^^^^^^^ !#$ 45 % ]52*;(/ ^^^^^^^^^^^^ &18C4< ^^^^^^^^^ =54/( &18C4< ^^^^^^^^^^^^^^^^^^^^^ We can now make this statement: A curve between two points has length L # lim ;x *0, ;y *0 ? ;x + ;y ? f (c ) ;x . 2 2 . The limit of a chord length can be found exactly by transforming it to a Riemann sum: Here is the technique used. It is some involved algebra. Do not worry why steps are done. 5 ;y 2 8 2 5 , ;y / 2 8 2 ;x + ;y # 71 + 2 : ;x # 71 + . 1 : ;x 76 - ;x 0 :9 6 ;x 9 2 2 So a chord length can be written as ? 5 , ;y / 2 8 71 + . 1 : ;x 2 # ? 76 - ;x 0 :9 5 , ;y / 2 8 71 + . 1 : ;x 76 - ;x 0 :9 ;y # f 3( x ) ;x So the exact length of the curve between x # a and x # b is As ;x approaches 0, you know that b L# > 2 1 + ( f 3( x )) dx NOTE : very few problems can be solved using the FTC. a Example 1) Find the exact length of the curve y # - x from x = 0 to x = 3. Verify geometrically. MasterMathMentor.com - 57 - Stu Schwartz Example 2) Find the exact length of the curve y # 5 x ! 2 from x = 0 to x = 2. No calculators. Example 3) Find the exact length of the curve y # x 3 2 from x = 0 to x = 4. No calculators. Example 4) At time = 0, a bug starts crawling along the path y # the bug crawl in 2 seconds? (no calculators) 32 1 2 t + 2) , y in feet, t in seconds.. How far does ( 3 Example 5) Find the length of the given curves from between the indicated x-values (show setup - calculator allowed) 5 48 a. y # e x q0, 2r b. y # tan x 70, : 6 49 c. y # 4 x ! x 2 MasterMathMentor.com q1, 4r d. y # x sin x q0, 2#r - 58 - Stu Schwartz Arc Length - Homework Find the exact length of the curves between the indicated x values. No calculators. 1) 2) y # 4 x (0,2) y # 10 x ! 1 3 2 (0,4) x3 1 + from x = 1 to x = 2. No calculators. The algebra is 12 x intricate but straightforward. Take your time and do it neatly. 3) Find the exact length of the curve y # Find the length of the curves between the x-values. Calculators allowed. 4) y # x 2 ! 5 x + 3 5) y # x 3 ! 9 x 2 + 5 x + 50 (1,6) 6) y # sec x 5 48 760, 4 :9 MasterMathMentor.com 7) y # (ln x ) - 59 - 2 (-1,9) (0.1, e) Stu Schwartz L) =<1 0)'4;21 58 4<1 2)C<4 3<5B3 4<1 R18 ]2/8>()8 R2)9C1 /'2533 4<1 \1(/B/21 S)@12 614B118 F/ /89 _`## =<1 '18412 30/8 5: 4<1 62)9C1 )3 /65;4 -%,, :114 (58C# =<1 3;30183)583 '/6(13 </8C )8 0/2/65()' /2'3 :25* 45B123 M$, :4 /65@1 4<1 B/412a3 3;2:/'1# =<131 '/6(13 '5*1 /3 '(531 /3 %%, :4 45 4<1 B/412 /4 4<1 '18412 5: 4<1 30/8# D31 4<)3 )8:5*/4)58 45 B2)41 /8 1b;/4)58 5: 4<1 b;/92/4)' :;8'4)58 1A02133)8C 4<1 <1)C<4 5: 4<1 '/6(13 :25* 4<1 B/412 /3 / :;8'4)58 /3 4<1 <52)X584/( 9)34/8'1 :25* 4<1 '18412 30/8 (21*1*612 <5B 45 C1812/41 / 0/2/65(/ :25* + 05)843)# D31 4<1 1b;/4)58 4<18 45 '/(';(/41 4<1 (18C4< 5: 4<1 0/2/65()' '/6(1# -%,, :4 M$, :4 M$, :4 %%, :4 9. When a chain hangs under its own weight, its shape is a catenary (from the latin for chain). The equation of a catenary with a vertex on the y-axis is y # e x + e! x . Find the length of the chain from x = -2 to x = 2. Then use the same technique you used in v 8 to find the length of the parabola with the same vertex and endpoints. MasterMathMentor.com - 60 - Stu Schwartz
© Copyright 2025 ExpyDoc