APPLICATION NOTE Design Optimization for a Low-Power SAMA5D3-based System Atmel | SMART SAMA5D3 Series Introduction The Atmel ® | SMART SAMA5D3 series is a high-performance, power-efficient embedded MPU. It features reduced power consump tion, making it an ideal platform for low-power applications, such as battery-powered devices. This application note provides techniques to optimize the design of a SAMA5D3based system in order to achieve the lowest power consumption possible. The application note consists of three sections: Section 1 introduces the SAMA5D36 CPU Module Power Consumption (CMP) board and its Linux demo. Section 2 presents the overall power consumption of SAMA5D36 in different modes, including Low-power mode and Active mode. Section 3 explains how to optimize the power consumption for a SAMA5D3based system. This application note should be used in conjunction with the SAMA5D3 Series datasheet available on www.atmel.com. SMART Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. SAMA5D36-CMP Board and Linux Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1 1.2 1.3 2. Power Consumption under Linux Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 3. SAMA5D36-CMP Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Linux Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Source Code Extraction and Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Low-power Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Linux Idle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Dhrystone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 LCD Controller (LCDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Image Sensor Interface (ISI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Gigabit EMAC (GMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 USB Host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Power Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1 3.2 Optimizing Power Consumption of the SAMA5D36 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Optimizing Power Consumption of External Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5. FAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Appendix A. SAMA5D36-CMP Schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6. 2 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 1. SAMA5D36-CMP Board and Linux Demo 1.1 SAMA5D36-CMP Board SAMA5D36-CMP board (see Figure 1-1) is a CPU module designed to measure the power consumption of the SAMA5D36 device. For complete schematics of the SAMA5D36-CMP RevC, refer to the appendix. Note: Before using the CMP board, check the settings of all jumpers to ensure that they are in the default state as illustrated in Figure 1-2. The CMP board is a CPU module (CM) board to be used in conjunction with the SAMA5D3-EK main board (MB). The main differences between the CMP board and the CM board are the jum pers that measure the power consumption of ea ch rail of th e SAMA5D36 product, the use of LPD DR2 instead of DDR 2, and the power management IC (PMIC). Figure 1-1. SAMA5D36-CMP Overview 32Mb Serial Flash 256MB NAND Flash SAMA5D36 512MB LPDDR2 32bit 128Mb NOR Flash Power Button Rail Jumpers KSZ9031RN Ethernet PHY PMIC ATC8865 1Kb EEPROM SAMA5D36-CMP 1.1.1 Jumper Settings With one jumper on each power rail of the SAMA5D36 device, the CMP board features more jumpers than the CM board, thus offering more precise measurement capabilities than the CM. This makes it possible to measure the current of each power rail, thus facilitating the overall power consumption investigation/analysis of the SAMA5D36 and external devices. This is of particular importance for low-power applications. For detailed jumper settings on the CMP board, please refer to Figure 1-2. 1.1.2 Low-Power DDR2 (LPDDR2) Low-power DDR2 memory (MT42L128M32D1GU-25 WT) is used on the CMP board instead of DDR2, which is used on the CM board. Its low -power advantage makes LPDDR2 a good memory replacement in low-power system design. 1.1.3 Power Management IC (PMIC) The Active-Semi ACT8865 is the power management IC (PMIC) implemented on the CMP board. It supplies all the on-board components including the CPU and the memories, making it a complete and highly-efficient power management solution. Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 3 Figure 1-2. CMP Default Jumper Settings REFERENCE DEFAULT FUNCTION 4 JP2 CLOSE VDDCORE PAGE 4 JP3 CLOSE VDDUTMIC 4 JP4 CLOSE VDDPLLA 4 JP6 CLOSE VDDIOM_MPU 4 JP7 CLOSE VDDBU 4 JP8 CLOSE VDDIOP1_MPU 4 JP9 CLOSE VDDIOP0_MPU 4 JP10 CLOSE FUSE_2V5 4 JP11 CLOSE VDDUTMII 4 JP12 CLOSE VDDOSC 4 JP13 CLOSE VDDANA 4 JP14 OPEN CM-3V3 to MB-3V3 4 JP15 CLOSE VDDIODDR_MPU_1V2 4 JP17 CLOSE VCC_5V 4 JP18 CLOSE VCC_1V8 4 JP19 CLOSE VCC_3V3 4 JP20 CLOSE VDDIOP1_GPHY 4 JP21 CLOSE VDDIODDR_1V2 4 JP22 CLOSE VCC_1V2 7 JP1 OPEN Disable SPI0_NPCS0 for Dataflash 9 JP16 2-1 GPHY 1V2 from VCC_1V2 2-3 GPHY 1V2 from PMOS The CMP board is fully compatible with the Atmel SAMA5D3-EK evaluation kit. It can be used as a seamless replacement for the CM board of the Atmel SAMA5D3-EK, and functions with the main board (MB) and display module (DM) board. In this application note, we develop a power consumption demonstration platform by replacing the CM with a CMP in the standard SAMA5D3-EK, as shown in Figure 1-3. Note: The CMP board is not for public sale. It is intended only for internal engineering purposes. For more information on the CMP board, please contact your local Atmel representative or FAE. Figure 1-3. Power Consumption Demo Platform CMP DM MB Note: For more details on the SAMA5D3-EK, refer to the SAMA5D3 Series Evaluation Kit User Guide available on www.atmel.com. 4 Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 1.2 Linux Demo The SAMA5D36-CMP board is delivered with a default Linux demo stored in the on-board NAND Flash. At powerup, in connection with the SAMA5D3x-MB and SAMA5D3x-DM boards, the demo starts running and plays a video. The default Linux demo code together with this application note can be downloaded from: ftp://ftp.linux4sam.org/pub/demo/sama5d36-cmp/ The demo archive contains: All component binaries: sama5d3xek-nandflashboot-uboot-3.6.1.bin, u-boot.bin, sama5d36ek_cmp.itb, rootfs-sama5d3xek.ubi A TCL/SAM-BA script that interfaces with the SAM-BA tool to flash the demo: sama5d3xek_demo_linux_nandflash.tcl A .bat script able to run the flashing script calling SAM-BA itself: sama5d3xek_demo_linux_nandflash.bat The Atmel SAMA5D36 integrates the full peripheral set available for the SAMA5D3 series, including an LCD controller, touch screen interface, CMOS sensor interface, Gigabit EMAC, 10/100 EMAC and a high-speed USB host and device. The default Linux demo for the SAMA5D36-CMP is designed for the evaluation of these peripherals. In addition, the demo has been designed to support the MB RevC/D/E, a nd any of the display modules, either the 5" with resi stive touchscreen, the TM4300 or the TM700 from PDA with capacitive touchscreen.. If the on-board NAND Flash has been erased, the user may need to re-flash the default demo. To do so, follow the procedure below: Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 5 1. Set up drivers/software environment by installing: ̶ JLink (\tools\Jlink\Setup_JLinkARM_V450j.zip): SAM-ICE driver ̶ JLinkCDC (\tools\Jlink OB DBGU\JLinkCDCInstaller_V1_2b.zip): USB serial port driver for debug information display SAM-BA (\tools\SAM-BA2.12\sam-ba_2.12.zip): a tool used to program the on-board memory ̶ SAM-BA patch (tools\SAM-BA2.12\sam-ba_2.12_patchsama5d3xcmp.zip) ̶ (Note: SAM-BA 2.12 formal release is for SAMA5D3-EK with DDR2 on CM board. To support the CMP board with LPDDR2, a patc h needs to be appli ed. Extract the .zip patch file and unz ip i t, run samba_2.12_patchsama5d3xcmp.exe by double-clicking it to apply the SAM-BA patch.) 2. Build the demo platform: ̶ Double-check the connection of the CM with the MB and the DM to make sure they are properly connected and all jumpers are correctly set. ̶ Press PB4 CS_BOOT button to de-select the on-board serial Flash and the NAND Flash. Insert a 5V power supply to power-up the demo board. Connect the demo board through J20 USB-A to the PC with a micro-USB cable. ̶ Check “Device Manager->Ports (COM & LPT)”. If “AT91 USB to Serial Converter (COMx)” appears, then the USB connection between the demo board and PC is working. ̶ 3. Download and program: Unzip the demo package (\demo\linux4sam-buildroot-sama5d3xek-cmp-demo-v1.0.1.zip). In the demo archive, run sama5d3xek_demo_linux_nandflash.bat by double-clicking it to flash the on-board memory. ̶ A log file (logfile.log) will pop up upon completion of demo flashing. ̶ 4. Run the demo: Re-plug the 5V power supply to run the Linux demo on the demo board. ̶ Use a micro-USB cable to connect the demo board through J14 to the PC, and open a hyperterminal console window as (115200-8-N-1). ̶ On the console window, type “root” to log in: ̶ Welcome to Buildroot buildroot login: root # 1.3 Source Code Extraction and Building a) At91bootstrap: Github: https://github.com/at91linux/at91bootstrap.git Branch: wya/at91bootstrap-3.x-cmp TAG: sama5d3x_cmp_v1.0 Commands to build binary: # make sama5d3xeknf_cmp_uboot_defconfig # make Generated file: sama5d3xek-nandflashboot-uboot-3.6.1.bin b) u-boot: Github: https://github.com/at91linux/u-boot-at91.git Branch: u-boot-2013.07-at91-cmp TAG: sama5d3x_cmp_v1.0 6 Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 Commands to build binary: # make sama5d3x_cmp_nandflash Generated file: u-boot.bin c) Linux: Github: git://github.com/at91linux/linux-at91.git Branch: wya/linux-at91-cmp TAG: sama5d3x_cmp_v1.0 Commands to build binary: # ./build_cmp_all.sh Generated file: sama5d36ek_cmp.itb d) buildroot (the same as SAMA5D3 series release): Github: git://github.com/linux4sam/buildroot-at91.git Branch: buildroot-2013.02-at91 Commands to build binary: # make sama5d3ekdemo_defconfig # make Generated file: rootfs-sama5d3ek.ubi Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 7 2. Power Consumption under Linux Scenarios The SAMA5D3 series is based on the ARM ® Cortex™-A5 processor and offers a good balance between performance and power consumption. Typical application scenarios have been selected to illustrate the high performance levels of the SAMA5D3, its rich connectivity and multimedia features and its low power consumption. This section gives a detailed description of each scenario, as well as the typical power consumption data for each. All power consumption data were measured based on: HW demo board: default demo platform (RevD MB+5” LCD+RevC CMP) SW demo package: linux4sam-buildroot-sama5d3xek-cmp-demo-v1.0.1.zip Measurement equipment: Agilent 34410A 6(1/2) Digit Multimeter The power consumption data may vary slightly depending on the revision of the MB, the LCD, the CMP and the measurement equipment used. Note: In some cases, the “top” comm and is used to get the real-tim e CPU usage value (%), which is (1CPU_idle%). # top Mem: 21008K used, 492708K free, 0K shrd, 0K buff, 6520K cached CPU: 36% usr 0% sys 0% nic 63% idle 0% io 0% irq 0% sirq For example, in the above log information, if the CPU idle percentage is 63%, then the CPU usage value is 37%. 2.1 Low-power Modes In most cases, at least two low-power modes must be implemented in an operating system – Standby mode and Suspend mode. In Standby mode, the SAMA5D3 is in Idle mode, and the core is in Wait for Interrupt mode. Most peripherals are still enabled and running. The internal bus is in High-speed mode for fast system restoration. In Suspend mode, the SAMA5D3 is in Ult ra-low-power mode with a 512 Hz MCK. The core is in Wait for Interrupt mode, and most peripherals are disabled and not running. The internal bus is set to Low-spe ed mode for further power savings. To build this scenario, stop auto-boot in U-Boot and set loader options for this case: U-Boot 2013.07-00054-gd757001 (Feb 25 2014 - 14:03:56) CPU: SAMA5D36 Crystal frequency: 12 MHz CPU clock : 528 MHz Master clock : 132 MHz DRAM: 512 MiB NAND: 256 MiB In: serial Out: serial Err: serial Net: No ethernet found. Hit any key to stop autoboot: 0 U-Boot>setenv bootcmd 'nand read 0x22000000 0x00200000 0x00400000; bootm 0x22000000#conf@sama5d36ek_pm' U-Boot>boot After the operating system starts up, log in and type commands to enter the system into the low-power modes separately: Welcome to Buildroot buildroot login: root # echo standby >/sys/power/state // echo mem >/sys/power/state 8 Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 PM: Syncing filesystems ... done. Freezing user space processes ... (elapsed 0.01 seconds) done. Freezing remaining freezable tasks ... (elapsed 0.01 seconds) done. LDO_REG7: No configuration LDO_REG6: No configuration FUSE_2V5: No configuration VDDANA: No configuration Suspending console(s) (use no_console_suspend to debug) PM: suspend of devices complete after 218.937 msecs PM: late suspend of devices complete after 0.407 msecs PM: noirq suspend of devices complete after 0.391 msecs The power consumption data for each power rail of the SAMA5D36 is listed below for reference. Use Case: Low Power Modes (command: echo standby > /sys/power/state) (command: echo mem > /sys/power/state) Operation Setting: LPDDR2 in self-refresh mode Used Peripheral: NAND, DBGU, MPDDRC, GPIO Suspend to Mem Standby (MCK=PCK=132MHz) (MCK=PCK=512Hz=32768Hz(osc)/64) Power Rail VDDCORE(JP2) VDDIODDR(JP15) VDDIOM(JP6) VDDIOP0(JP9) VDDIOP1(JP8) VDDBU(JP7) VDDUTMIC(JP3) VDDUTMII(JP11) VDDPLLA(JP4) VDDOSC(JP12) VDDANA(JP13) VDDFUSE(JP10) Total Notes: 1. 2. Voltage Range (V) 1.1 ~ 1.32 1.7 ~ 1.9 1.14 ~ 1.30 1.65 ~ 1.9 3.0 ~ 3.6 1.65 ~ 3.6 1.65 ~ 3.6 1.65 ~ 3.6 1.1 ~ 1.32 3.0 ~ 3.6 1.1 ~ 1.32 1.65 ~ 3.6 3.0 ~ 3.6 2.25 ~ 2.75 Voltage (V) Current (mA) 1.15 29.69 Power Consumption (mW) 34.14 1.15 0.0017 0.00 Current (mA) Power Consumption (mW) 0.36 0.41 0.0016 0.00 3.3 0.0061 0.02 0.0061 0.02 3.3 3.3 3.25 1.15 3.3 1.15 3.3 3.32 2.51 0.0076 0.0046 0.0022 0.0095 0.0001 7.73 0.43 0.0032 0.0001 0.03 0.02 0.01 0.01 0.00 8.89 1.42 0.01 0.00 45 0.0076 0.0046 0.0022 0.0014 0.0001 0.0002 0.0001 0.0032 0.0001 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.50 For Linux Standby mode, the SAMA5D36 is in Idle mode, while some peripherals such as the timer, DDR2 controller and DBGU serial port must be enabled. For Linux Suspend mode, the SAMA5D36 is in ULP (Ultra-low-power) 512 Hz mode. In the SAMA5D3 series datasheet, the power consumption for ULP 512Hz is given as 1.2V × 0.40 mA. In this case, due to the lower supply voltage (1.15V), the actual power consumption is 1.15V × 0.36 mA. Touch the keypads on the DM board to wake up the demo. The system will resume all the suspended drivers and print the wake-up time on the hyperterminal: PM: noirq resume of devices complete after 0.315 msecs PM: early resume of devices complete after 0.358 msecs PM: resume of devices complete after 180.424 msecs Restarting tasks ... done. Vddcore suspend finish voltage 1250mV # Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 9 2.2 Linux Idle In this scenario, the Linux system is running without any workload (CPU usage is close to 0). Power consumption for this scenario is measured as the reference for other scenarios. By comparison, we can see how the current changes on each power rail when special features are enabled and in use. To build up this scenario, stop auto-boot in U-Boot and set loader options for this case: Hit any key to stop autoboot: 0 U-Boot>setenv bootcmd 'nand read 0x22000000 0x00200000 0x00400000; bootm 0x22000000#conf@sama5d36ek_pm' U-Boot>boot After the operating system starts up, log in: Welcome to Buildroot buildroot login: root # The power consumption data for each power rail of the SAMA5D36 is listed below for reference. Use Case: Command prompt after login, No application running, no LCD display Operation Setting: MCK: 132MHz, PCK: 528MHz, LPDDR2: 132MHz Used Peripheral: NAND, DBGU, MPDDRC Power Voltage Range Power Rail Voltage (V) Current (mA) Consumption (V) (mW) VDDCORE(JP2) VDDIODDR(JP15) VDDIOM(JP6) VDDIOP0(JP9) VDDIOP1(JP8) VDDBU(JP7) VDDUTMIC(JP3) VDDUTMII(JP11) VDDPLLA(JP4) VDDOSC(JP12) VDDANA(JP13) VDDFUSE(JP10) Total 10 1.1 ~ 1.32 1.7 ~ 1.9 1.14 ~ 1.30 1.65 ~ 1.9 3.0 ~ 3.6 1.65 ~ 3.6 1.65 ~ 3.6 1.65 ~ 3.6 1.1 ~ 1.32 3.0 ~ 3.6 1.1 ~ 1.32 1.65 ~ 3.6 3.0 ~ 3.6 2.25 ~ 2.75 1.25 44.97 56.21 1.25 4.46 5.58 3.3 0.053 0.17 3.3 3.3 3.25 1.25 3.3 1.25 3.3 3.32 2.51 0.0079 0.0046 0.002 0.011 0.0001 8.06 0.43 0.0031 0.0001 0.03 0.02 0.01 0.01 0.00 10.08 1.42 0.01 0.00 74 Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 2.3 Dhrystone In this scenario, Dhrystone, a typical computing benchmark program, is used to evaluate the contribution of the ARM core to power consumption figures. The Dhrystone program is compiled with the same toolchain as kernel building. The Dhrystone source code and binary can be extracte d from APP\dhrystone\ at FTP: ftp://ftp.linux4sam.org/pub/demo/sama5d36-cmp/. In this case, the CPU usage accounts for almost 99% of the overall power consumption. To build this scenario, stop auto-boot in U-Boot and set loader options for this case: Hit any key to stop autoboot: 0 U-Boot>setenv bootcmd 'nand read 0x22000000 0x00200000 0x00400000; bootm 0x22000000#conf@sama5d36ek_dhrystone' U-Boot>boot After the operating system starts up, log in: Welcome to Buildroot buildroot login: root # Insert an SD card containing Dhrystone and copy Dhrystone to NAND Flash: # mount /dev/mmcblk0p1 /mnt # cp /mnt/dhrystone ./ Unmount SD card and remove it from the demo board: # umount /mnt Run Dhrystone: # ./dhrystone The power consumption data for each power rail of the SAMA5D36 is listed below for reference. Use Case: Active Power Consumption (running Dhrystone: 599DMIPS) Operation Setting: MCK: 132MHz, PCK: 528MHz, LPDDR2: 132MHz Used Peripheral: NAND, DBGU, MPDDRC, HSMCI Power Voltage Range Consumption Power Rail Voltage (V) Current (mA) (V) (mW) VDDCORE(JP2) 1.1 ~ 1.32 1.25 130.63 163.29 1.7 ~ 1.9 VDDIODDR(JP15) 1.25 4.46 5.58 1.14 ~ 1.30 1.65 ~ 1.9 VDDIOM(JP6) 3.3 0.053 0.17 3.0 ~ 3.6 VDDIOP0(JP9) 1.65 ~ 3.6 3.3 0.0081 0.03 VDDIOP1(JP8) 1.65 ~ 3.6 3.3 0.0047 0.02 VDDBU(JP7) 1.65 ~ 3.6 3.25 0.0019 0.01 VDDUTMIC(JP3) 1.1 ~ 1.32 1.25 0.011 0.01 VDDUTMII(JP11) 3.0 ~ 3.6 3.3 0.0001 0.00 VDDPLLA(JP4) 1.1 ~ 1.32 1.25 8.05 10.06 VDDOSC(JP12) 1.65 ~ 3.6 3.3 0.43 1.42 VDDANA(JP13) 3.0 ~ 3.6 3.32 0.0032 0.01 VDDFUSE(JP10) 2.25 ~ 2.75 2.51 0.0001 0.00 Total 181 Note: By comparing this scenario with the “Linux Idle” scenario, we can see that the power consumption contribution of the ARM core lies only in VDDCORE. Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 11 2.4 Audio Audio playback is an essential feature for smart devices. In this scenario, the SAMA5D36 is configured to perform MP3 decoding and playing function. To build this scenario, stop auto-boot in U-Boot and set loader options for this case: Hit any key to stop autoboot: 0 U-Boot>setenv bootcmd 'nand read 0x22000000 0x00200000 0x00400000; bootm 0x22000000#conf@sama5d36ek_audio' ----------------------------------------------------------------------------------------------------------------------------------------------------------------------Note: The DTB file in loader options differs for different revisions of the MB. For RevC MB: U-Boot>setenv bootcmd 'nand read 0x22000000 0x00200000 0x00400000; bootm 0x22000000#conf@sama5d36ek_revc_audio' ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- U-Boot>boot After the operating system starts up, log in: Welcome to Buildroot buildroot login: root # Insert an SD card containing an MP3 file and launch the following commands: # mount /dev/mmcblk0p1 /mnt # cd /mnt # ls tellmewhy.mp3 # madplay tellmewhy.mp3 # cd ../ # umount /mnt The power consumption data for each power rail of the SAMA5D36 is listed below for reference. Use Case: MP3 Audio Playback (Mp3 file in SD card, 128Kbps, 44.1KHz sample rate, 2 channels) Operatino Setting: MCK: 132MHz, PCK: 528MHz, LPDDR2: 132MHz Used Peripheral: NAND, DBGU, MPDDRC, SSC, HSMCI Power Voltage Range Power Rail Voltage (V) Current (mA) Consumption (V) (mW) VDDCORE(JP2) 1.1 ~ 1.32 1.25 55.53 69.41 1.7 ~ 1.9 VDDIODDR(JP15) 1.25 4.73 5.91 1.14 ~ 1.30 1.65 ~ 1.9 VDDIOM(JP6) 3.3 0.042 0.14 3.0 ~ 3.6 VDDIOP0(JP9) 1.65 ~ 3.6 3.3 0.19 0.63 VDDIOP1(JP8) 1.65 ~ 3.6 3.3 2.62 8.65 VDDBU(JP7) 1.65 ~ 3.6 3.25 0.0019 0.01 VDDUTMIC(JP3) 1.1 ~ 1.32 1.25 0.011 0.01 VDDUTMII(JP11) 3.0 ~ 3.6 3.3 0.0001 0.00 VDDPLLA(JP4) 1.1 ~ 1.32 1.25 8.07 10.09 VDDOSC(JP12) 1.65 ~ 3.6 3.3 0.43 1.42 VDDANA(JP13) 3.0 ~ 3.6 3.32 0.0086 0.03 VDDFUSE(JP10) 2.25 ~ 2.75 2.51 0.0001 0.00 Total 96 12 Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 2.5 LCD Controller (LCDC) This scenario is designed to evaluate the power consumption of the LCD controller, which is typically used fo r multimedia display. By default, the SAMA5D36-CMP demo launches a video. During video playing, the CPU usage is approximately 45%, mainly for video software decoding. To build this scenario, stop auto-boot in U-Boot and set loader options for this case: Hit any key to stop autoboot: 0 U-Boot>setenv bootcmd 'nand read 0x22000000 0x00200000 0x00400000; bootm 0x22000000#conf@sama5d36ek_lcd' ----------------------------------------------------------------------------------------------------------------------------------------------------------------------Note: The DTB file in loader options differs for different DM. For PDA 4.3”: U-Boot>setenv bootcmd 'nand read 0x22000000 0x00200000 0x00400000; bootm 0x22000000#conf@ sama5d36ek_pda4_lcd' For PDA 7”: U-Boot>setenv bootcmd 'nand read 0x22000000 0x00200000 0x00400000; bootm 0x22000000#conf@ sama5d36ek_pda7_lcd' ----------------------------------------------------------------------------------------------------------------------------------------------------------------------U-Boot>boot After the operating system starts up, log in: Welcome to Buildroot buildroot login: root # The power consumption data for each power rail of the SAMA5D36 is listed below for reference. Use Case: Video playback (LCDC: base layer, 800*480*24 bits, 45 fps; 480*272 MPEG2, software decoding) Operation Setting: MCK: 132MHz, PCK: 528MHz, LPDDR2: 132MHz Used Peripheral: NAND, DBGU, MPDDRC, LCDC, GPIO Power Rail VDDCORE(JP2) VDDIODDR(JP15) VDDIOM(JP6) VDDIOP0(JP9) VDDIOP1(JP8) VDDBU(JP7) VDDUTMIC(JP3) VDDUTMII(JP11) VDDPLLA(JP4) VDDOSC(JP12) VDDANA(JP13) VDDFUSE(JP10) Total Voltage Range (V) 1.1 ~ 1.32 1.7 ~ 1.9 1.14 ~ 1.30 1.65 ~ 1.9 3.0 ~ 3.6 1.65 ~ 3.6 1.65 ~ 3.6 1.65 ~ 3.6 1.1 ~ 1.32 3.0 ~ 3.6 1.1 ~ 1.32 1.65 ~ 3.6 3.0 ~ 3.6 2.25 ~ 2.75 Voltage (V) Current (mA) 1.25 85.41 Power Consumption (mW) 106.76 1.25 6.44 8.05 3.3 0.14 0.46 3.3 3.3 3.25 1.25 3.3 1.25 3.3 3.32 2.51 12.28 0.0047 0.0029 0.011 0.0001 8.05 0.42 0.0032 0.0001 40.52 0.02 0.01 0.01 0.00 10.06 1.39 0.01 0.00 167 Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 13 2.6 Image Sensor Interface (ISI) This scenario is designed to evaluate the power consumption of the image sensor interface, which is used for image sensor preview. By defa ult, the SAMA5D36-CMP demo supports several sensor modules including OV5640/OV2640/OV2643. To build this scenario, stop auto-boot in U-Boot and set loader options for this case: Hit any key to stop autoboot: 0 U-Boot>setenv bootcmd 'nand read 0x22000000 0x00200000 0x00400000; bootm 0x22000000#conf@sama5d36ek_isi' ----------------------------------------------------------------------------------------------------------------------------------------------------------------------Note: The DTB file in loader options differs for different revisions of the MB and the DM. For PDA 4.3”: U-Boot>setenv bootcmd 'nand read 0x22000000 0x00200000 0x00400000; bootm 0x22000000#conf@sama5d36ek_pda4_isi' For PDA 7”: U-Boot>setenv bootcmd 'nand read 0x22000000 0x00200000 0x00400000; bootm 0x22000000#conf@sama5d36ek_pda7_isi' For RevC MB: U-Boot>setenv bootcmd 'nand read 0x22000000 0x00200000 0x00400000; bootm 0x22000000#conf@sama5d36ek_revc_isi' U-Boot>setenv bootcmd 'nand read 0x22000000 0x00200000 0x00400000; bootm 0x22000000#conf@sama5d36ek_revc_pda4_isi' U-Boot>setenv bootcmd 'nand read 0x22000000 0x00200000 0x00400000; bootm 0x22000000#conf@sama5d36ek_revc_pda7_isi' ----------------------------------------------------------------------------------------------------------------------------------------------------------------------U-Boot>boot After the operating system starts up, log in: Welcome to Buildroot buildroot login: root # Stop the default video playing: # ps PID USER COMMAND 1 root init … 619 root {go.sh} /bin/sh /root/go.sh 620 root -sh 624 root gst-launch-0.10 filesrc location=/root/MPEG2_480_272.avi ! avide 629 root ps # kill -9 619 (The PID may differ each time) # kill -9 624 (The PID may differ each time) Start the image sensor preview: # ls /sys/class/video4linux video0 # cat /sys/class/video4linux/video0/name isi-camera # gst-launch v4l2src device="/dev/video0" ! video/x-raw-yuv, width=640,height=480 ! ffmpegcolorspace ! fbdevsink 14 Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 The power consumption data for each power rail of the SAMA5D36 is listed below for reference. Use Case: Image Sensor preview (Image Sensor: OV5640, VGA 640*480, YUV422) Operation Setting: MCK: 132MHz, PCK: 528MHz, LPDDR2: 132MHz Used Peripheral: NAND, DBGU, MPDDRC, ISI, LCDC, GPIO Power Voltage Range Consumption Power Rail Voltage (V) Current (mA) (V) (mW) VDDCORE(JP2) 1.1 ~ 1.32 1.25 79.67 99.59 1.7 ~ 1.9 VDDIODDR(JP15) 1.25 8.16 10.20 1.14 ~ 1.30 1.65 ~ 1.9 VDDIOM(JP6) 3.3 0.13 0.43 3.0 ~ 3.6 VDDIOP0(JP9) 1.65 ~ 3.6 3.3 14.74 48.64 VDDIOP1(JP8) 1.65 ~ 3.6 3.3 0.0045 0.01 VDDBU(JP7) 1.65 ~ 3.6 3.25 0.0075 0.02 VDDUTMIC(JP3) 1.1 ~ 1.32 1.25 0.011 0.01 VDDUTMII(JP11) 3.0 ~ 3.6 3.3 0.0001 0.00 VDDPLLA(JP4) 1.1 ~ 1.32 1.25 8.05 10.06 VDDOSC(JP12) 1.65 ~ 3.6 3.3 0.42 1.39 VDDANA(JP13) 3.0 ~ 3.6 3.32 4.06 13.48 VDDFUSE(JP10) 2.25 ~ 2.75 2.51 0.0001 0.00 Total 184 Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 15 2.7 Gigabit EMAC (GMAC) iPerf is a tool to measure the maximum bandwidth for TCP and UDP. By default, it is included in the SAMA5D36CMP demo. To proceed, set up the Gigabit Ethernet network and start the measurement. To build this scenario, stop auto-boot in U-Boot and set loader options for this case: Hit any key to stop autoboot: 0 U-Boot>setenv bootcmd 'nand read 0x22000000 0x00200000 0x00400000; bootm 0x22000000#conf@sama5d36ek_gmac' U-Boot>boot After OS starts up, log in: Welcome to Buildroot buildroot login: root # Use an Ethernet cable to connect the Gigabit Ethernet ports of both the evaluation kit and the PC, as illustrated below: PC SAMA5D36 Client Server EMAC MAC GMAC Set up the evaluation kit as the server with the following commands: # ifconfig eth0 192.168.3.2 # iperf -u –s Set up the PC as the client and then start data transfer to the PC with the following commands: # ifconfig eth0 192.168.3.3 # iperf -u -c 192.168.3.2 -t 120 -i 1 -b 300M The power consumption data for each power rail of the SAMA5D36 is listed below for reference. Use Case: Running as iPerf server Operatino Setting: MCK: 132MHz, PCK: 528MHz, LPDDR2: 132MHz Used Peripheral: NAND, DBGU, MPDDRC, GMAC Power Rail VDDCORE(JP2) VDDIODDR(JP15) VDDIOM(JP6) VDDIOP0(JP9) VDDIOP1(JP8) VDDBU(JP7) VDDUTMIC(JP3) VDDUTMII(JP11) VDDPLLA(JP4) VDDOSC(JP12) VDDANA(JP13) VDDFUSE(JP10) Total 16 Voltage Range (V) 1.1 ~ 1.32 1.7 ~ 1.9 1.14 ~ 1.30 1.65 ~ 1.9 3.0 ~ 3.6 1.65 ~ 3.6 1.65 ~ 3.6 1.65 ~ 3.6 1.1 ~ 1.32 3.0 ~ 3.6 1.1 ~ 1.32 1.65 ~ 3.6 3.0 ~ 3.6 2.25 ~ 2.75 Voltage (V) Current (mA) 1.25 95.24 Power Consumption (mW) 119.05 1.25 8.38 10.48 3.3 0.062 0.20 3.3 3.3 3.25 1.25 3.3 1.25 3.3 3.32 2.51 0.0079 10.37 0.0019 0.011 0.0001 8.01 0.41 0.0031 0.0001 0.03 34.22 0.01 0.01 0.00 10.01 1.35 0.01 0.00 175 Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 2.8 USB Host Bonnie++ is a benchmark tool to test hard drive and file system performance. The Bonnie++ source code can be downloaded for free from http://sourceforge.net/projects/bonnie/. In this case, Bonnie++ is compiled with the same tool-chain as kernel building. The Bonnie++ source code and binary can be extracted from APP\bonnie\ at FTP: ftp://ftp.linux4sam.org/pub/demo/sama5d36-cmp/. To measure the typical power consumption of the USB peripheral, the test must be run from a USB disk. The test lasts about 30 minutes, depending on the speed of the USB disk. The maximum CPU usage may be as high as 90%. To build up this scenario, stop auto-boot in U-Boot and set loader options for this case: Hit any key to stop autoboot: 0 U-Boot>setenv bootcmd 'nand read 0x22000000 0x00200000 0x00400000; bootm 0x22000000#conf@sama5d36ek_usb' U-Boot>boot After the operating system starts up, log in: Welcome to Buildroot buildroot login: root # Plug a USB disk containing the benchmark test (Bonnie++) and launch the following commands: # mount -t vfat /dev/sda1 /mnt # cd /mnt # ls bonnie++ # ./bonnie\+\+ -d ./test -s 1000 -u 0 Using uid:0, gid:0. Writing with putc()...done Writing intelligently...done Rewriting...done Reading with getc()...done Reading intelligently...done start 'em...done...done...done... Create files in sequential order...done. Stat files in sequential order...done. Delete files in sequential order...done. Create files in random order...done. Stat files in random order...done. Delete files in random order...done. Version 1.03e ------Sequential Output------ --Sequential Input- --Random-Per Chr- --Block-- -Rewrite- -Per Chr- --Block-- --Seeks-Machine Size K/sec %CP K/sec %CP K/sec %CP K/sec %CP K/sec %CP /sec %CP buildroot 1000M 3338 75 6674 1 4191 5 4354 95 21745 21 1318 27 ------Sequential Create------ --------Random Create--------Create-- --Read--- -Delete-- -Create-- --Read--- -Delete-files /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP 16 13 95 +++++ +++ 196 99 20 96 +++++ +++ 45 59 buildroot,1000M,3338,75,6674,1,4191,5,4354,95,21745,21,1318.1,27,16,13,95,++++ +,+++,196,99,20,96,+++++,+++,45,59 # cd ../ # umount /mnt Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 17 The power consumption data for each power rail of the SAMA5D36 is listed below for reference. Use Case: Run Bonnie++(Version: 1.03e command: ./bonnie++ -u 0) on USB disk Operatino Setting: MCK: 132MHz, PCK: 528MHz, LPDDR2: 132MHz Used Peripheral: NAND, DBGU, MPDDRC, USB Host Power Voltage Range Power Rail Voltage (V) Current (mA) Consumption (V) (mW) VDDCORE(JP2) 1.1 ~ 1.32 1.25 116.01 145.01 1.7 ~ 1.9 VDDIODDR(JP15) 1.25 5.53 6.91 1.14 ~ 1.30 1.65 ~ 1.9 VDDIOM(JP6) 3.3 0.047 0.16 3.0 ~ 3.6 VDDIOP0(JP9) 1.65 ~ 3.6 3.3 0.0085 0.03 VDDIOP1(JP8) 1.65 ~ 3.6 3.3 0.0048 0.02 VDDBU(JP7) 1.65 ~ 3.6 3.25 0.0019 0.01 VDDUTMIC(JP3) 1.1 ~ 1.32 1.25 7.94 9.93 VDDUTMII(JP11) 3.0 ~ 3.6 3.3 22.95 75.74 VDDPLLA(JP4) 1.1 ~ 1.32 1.25 8.04 10.05 VDDOSC(JP12) 1.65 ~ 3.6 3.3 9.93 32.77 VDDANA(JP13) 3.0 ~ 3.6 3.32 0.0033 0.01 VDDFUSE(JP10) 2.25 ~ 2.75 2.51 0.0001 0.00 Total 281 18 Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 3. Power Optimization 3.1 Optimizing Power Consumption of the SAMA5D36 In this section, we provide techniques to optimize the power consumption of the SAMA5D36 using power rails, clock settings, peripheral settings, working mode selection and I/O setting. 3.1.1 SAMA5D36 Power Rails Table 3-1 lists the parts of the SAMA5D36 powered by different power rails. Understanding the power behavior of these power rails helps to optimize their use. Also, the power consumption parameters provided in the SAMA5D3 series datasheet help to estimate the power consumption of the SAMA5D36 in a real application. Table 3-1. SAMA5D3 Power Supplies Name Voltage Range, Nominal Associated Ground VDDCORE 1.1–1.32V, 1.2V GNDCORE VDDIODDR VDDIOM 1.7–1.9V, 1.8V 1.14–1.30, 1.2V 1.65–1.95V, 1.8V 3.0–3.6V, 3.3V GNDIODDR Powers The core, including the processor, the embedded memories and the peripherals LPDDR/DDR2 Interface I/O lines LPDDR2 Interface I/O lines GNDIOM NAND and HSMC Interface I/O lines VDDIOP0 1.65–3.6V GNDIOP Peripheral I/O lines VDDIOP1 1.65–3.6V GNDIOP Peripheral I/O lines VDDBU 1.65–3.6V GNDBU The Slow Clock Oscillator, the internal 32 kHz RC Oscillator and a part of the System Controller VDDUTMIC 1.1–1.32V, 1.2V GNDUTMI VDDUTMII 3.0–3.6V, 3.3V GNDUTMI The USB device and host UTMI+ interface VDDPLLA 1.1–1.32V, 1.2V GNDPLL The PLLA cell VDDOSC 1.65–3.6V GNDOSC Main Oscillator Cell and PLL UTMI. If PLL UTMI or USB is used, the range is to be 3.0V to 3.6V. VDDANA 3.0–3.6V, 3.3V GNDANA Analog-to-Digital Converter VDDFUSE 2.25–2.75V, 2.5V GNDFUSE The USB device and host UTMI+ core The UTMI PLL Fuse box for programming. It can be tied to ground with a 100 Ω resistor for fuse reading only. 3.1.1.1 VDDCORE VDDCORE powers the processor, embedded memories and all peripherals. The SAMA5D3 features three low-power modes: Idle, Ultra-low-power and Backup. Depending on the mode implemented on the SAMA5D3, the power consumption on VDDCORE can be lowered to different levels (refer to the SAMA5D3 datasheet for detailed numbers). When the processor goes into Ultra-low-power mode, power consumption and MCK frequency decrease. The lower the CPU MCK frequency, the less power it consumes, and the longer the wake-up time becomes. Suggestion: Select the appropriate MCK frequency for Ultra-low-power mode depending on the requirements of application performance and wake-up speed. Note: Put the core into Idle mode to save power when no tasks are in process. Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 19 3.1.1.2 VDDIODDR The current into VDDIODDR depends on the external memory devices and speed. Its range can vary from almost 0 to a much higher value. For the LPDDR2 on the CMP board, the voltage of the memory IOs is 1.25V and MCK is set to 132 MHz. After memory initialization, the current is about 4.5 mA with no data access. This current will increase with more data access (read and write), achieving up to 10.9 mA. For memory Self-refresh mode, the current is as low as 2~3 uA. In comparison, for the DDR2 on the CM board, with voltage of memory IOs at 1.8V and the MCK set to 132 MHz,, the current into VDDIODDR ranges from 15 mA to 20 mA. 3.1.1.3 VDDIOM, VDDIOP0 and VDDIOP1 These three power rails power most I/Os of SAMA5D3 (refer to section 4 “Package and Pinout” in datasheet). Any peripheral activity may affect the current value on the corresponding power rail. 3.1.1.4 VDDBU VDDBU powers the Slow Clock oscillator, the internal 32 kHz RC oscillator and a part of the System Controller. Suggestion: To reduce power consumption on VDDBU, make sure that the unused oscillator is disabled when switching between the external and internal oscillators.. Note: The internal 32 kHz RC oscillator is used in ROM code for fast boot-up, though its frequency precision is lower than that of the external crystal oscillator. 3.1.1.5 VDDOSC, VDDUTMIC and VDDUTMII VDDOSC powers the main oscillator cell and part of the PLL UTMI. VDDUTMIC powers the USB device and host UTMI+ core. Once the USB transceiver is enabled, approximately 5.5 mA will be consumed on this power rail. There will be an increase of approximately 2.5 mA for device or host transfer. VDDUTMII powers the USB device and host UTMI+ interface. There is a total of three USB ports. Each port causes an increase of about 18 mA of current in VDDUTMII after the USB connection is set up. Suggestion: To reduce power consumption on these three power rails, disable the USB transceiver as well as the UTMI PLL if the USB is not necessary in the application. 3.1.1.6 VDDPLLA The PLL output frequency ranges from 400 MHz to 1000 MHz. The higher the output frequen cy, the higer the power consumption. Thus it is important to define an appropriate clock tree for the system and then set up the oscillator and PLLs accordingly. For example, if PCK = 400 MHz, more power is saved by setting PCK = PLL = 400 MHz instead of PLL = 800 MHz and PCK=PLL/2. 3.1.1.7 VDDANA VDDANA supplies the Analog-to-Digital Converter and its IOs only. When the ADC is not in use or in Sleep mode, the current through this power rail is only several µA. 3.1.1.8 VDDFUSE During FUSE programming, the maximum current through VDDFUSE may reach 40 mA. Under other conditions, such as FUSE reading or no action, power consumption is close to 0. 20 Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 3.1.2 System Clock Master clock (MCK) is the clock provided to memory controllers and all peripherals. When the processor and all peripherals are idle and no task is being processed, the base consumption on VDDCORE mainly depends on MCK frequency, whether the PCK is equal to 2 × MCK, 3 × MCK, or 4 × MCK. The PCK frequency only affects the CPU performance. Table 3-2 shows the power consumption in Linux Idle mode with different MCK. We can see that the power consumption on VDDCORE in Idle mode is proportional to MCK frequency (~ 0.32 mA/MHz). Table 3-2. VDDCORE Consumption Vs. MCK OS Idle MCK=132 MHz PCK=528 MHz, VDDCORE=1.25V OS Idle MCK=132 MHz OS Idle MCK=88 MHz OS Idle MCK=50 MHz PCK=396 MHz PCK=264 MHz PCK=200 MHz Power Consumption (mW) Current (mA) Power Consumption (mW) 50.27 28.09 33.71 18.38 22.06 5.08 2.84 3.41 1.63 1.96 0.26 0.079 0.26 0.079 0.26 0.27 0.083 0.27 0.083 0.27 0.082 0.27 0.56 0.17 0.56 0.17 0.56 0.17 0.56 0.0013 0.00 0.0013 0.00 0.0013 0.00 0.001 3 0.00 1.2 0.0099 0.01 0.0093 0.01 0.0086 0.01 0.008 3 0.01 VDDUTMII(JP11) 3.3 0.0002 0.00 0.0002 0.00 0.0002 0.00 0.000 2 0.00 VDDPLLA(JP4) 1.2 7.81 9.76 9.99 11.99 10.01 12.01 VDDOSC(JP12) 3.3 0.42 1.39 0.42 1.39 0.42 1.39 0.42 VDDANA(JP13) 3.32 0.0032 0.01 0.0032 0.01 0.0032 0.01 0.003 2 0.01 VDDFUSE(JP10) 2.51 0.0002 0.00 0.0002 0.00 0.0002 0.00 0.000 2 0.00 Power Consumption (mW) Voltage Current Power Rail (V) (mA) VDDCORE(JP2) 1.2 42.18 52.73 41.89 VDDIODDR(JP15) 1.2 4.33 5.41 4.23 VDDIOM(JP6) 3.3 0.079 0.26 VDDIOP0(JP9) 3.3 0.083 VDDIOP1(JP8) 3.3 0.17 VDDBU(JP7) 3.25 VDDUTMIC(JP3) Current (mA) 0.08 70 Total Power Consumption (mW) Current (mA) 7.82 70 9.38 1.39 49 39 VDDCORE Consumption 0.32 0.40 0.32 0.38 0.32 0.38 0.37 0.44 Per MCK Suggestion: Select the appropriate PCK depending on application requirements. Then set MCK to 1/4 × PCK. 3.1.3 Peripherals The peripherals can be divided into three categories depending on their behavior regarding power consumption (VDDCORE). Refer to the table “Power Consumpti on by Peripheral in Active Mode (TA 25°C, TA 85°C and TA 105°C)” in the Electrical Characteristics section in the SAMA5D3 datasheet. 3.1.3.1 Category I Each peripheral in this category consumes a constant amount of power as long as it is enabled, with the powe r consumption value directly proportional to its working frequency. For example, when the USART is enabled, its power consumption is: 3.0 µA/MHz(1) × working frequency(2) Note (1): 3.0 uA/MHz is the USART consumption per MHz. Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 21 Note (2): The working frequency is not always equal to MCK. The Soft Modem (SMD) is a special case, with its power consumption dependent on its clock source instead of its working frequency. Linear with the MCK, thus its power consumption is: 5.5 µA/MHz(3) × MCK Note (3): 5.5 uA/MHz is the SMD consumption per MHz. 3.1.3.2 Category II The power consumption of the peripherals in this category is related to their transfer speed. For example, for the high-speed USB Host, when CPU usage is 24%, the UHPHS power consumption is: (9.6 × transfer speed (Mb/s) + 12) µA/MHz × MCK Note: For UHPHS/UDPHS, LCDC, EMAC/GMAC, the power consumption already includes the MPDDRC consumption on VDDCORE. 3.1.3.3 Category III The power consumption of each peripheral in this category is related to its bandwidth usage. An example is the MPDDRC. Figure 3-1 shows the correlation between MPDDRC power consumption and its bandwidth. Figure 3-1. Correlation between Consumption and Bandwidth Half FIFO 80 y = 31.82x + 46.598 R² = 0.997 70 Series1 Linear (Series1) Current uA/MHz Current uA/MHz Full FIFO 59 58 57 56 55 54 53 52 51 50 0.00 60 y = 40.899x + 46.773 R² = 0.9998 50 40 Series1 30 Linear (Series1) 20 10 0.10 0.20 0.30 0.40 0 0.00 Bandwidth Usage 0.20 0.40 0.60 Bandwidth Usage The increase in power consumption is linear with MCK (with the same bandwidth usage condition). Figure 3-2 shows the relation between power consumption increase and MCK (with the same bandwidth). 22 Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 Figure 3-2. Linearity between Consumption Increase and MCK MPDDRC Increase (49% bandwidth)) vs. Master Clock Current (mA) 4 3.5 3 2.5 2 Total 1.5 1 0.5 0 33 66 100 132 165 MCK (MHz) 3.1.4 VDDCORE Power Consumption Model With the power consumption information extracted from the datasheet, we can estimate the overall consumption on each power rail. Note: Compared to VDDCORE, other power rails do not contribute much to overall power consumption. For this reason, the focus in this section is on the power consumption model of VDDCORE. The overall consumption on VDDCORE can be calculated by the formula: IVDDCORE_overall = IVDDCORE_idle + (IVDDCORE_dhrystone – IVDDCORE_idle) × CPU_usage (%) + IVDDCORE_peripheral_1 + … + IVDDCORE_peripheral_n With the GMAC use case as an example: MCK is 132 MHz, PCK is 528 MHz. USART and GMAC are both enabled. CPU usage is 24%. GMAC transfer speed is 300 Mb/s. Therefore the theoretical overall consumption on VDDCORE is: IVDDCORE_overall = 24 mA + (117 mA - 24 mA) × 24% + (1.2 uA × 300 Mb/s + 36 uA) × 132 MHz / 1000 + 3.0 uA × 132 MHz / 1000 = 99.02 mA Note: Note: IVDDCORE_idle: VDDCORE power consumption in Idle mode (24 mA, refer to the SAMA5D3 datasheet) IVDDCORE_dhrystone: VDDCORE Power Consumption in Active Mode running Dhrystone (117 mA, refer to the SAMA5D3 datasheet). The calculated theoretical result is aligned with the measured value: 95.24 mA. Note: The calculated theoretical value is only for reference. The final da ta should be based on the real measurement result. Suggestions: 1. Disable any peripherals not implemented in the user application to avoid unnecessary power consumption. Note: Disabling the USB is not sufficient to e nsure that it consumes no power. In addition, the USB transceivers must also be disabled. 2. Use the minimum peripheral clock rate (MCK/8, /4, /2). Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 23 3.1.5 Power Supply Set the power supply voltage to a minimum value depending on the corresponding working conditions: 1.15V ± 5% for VDDCORE in Linux Suspend-to-mem mode 1.2V ± 5% (PLL < 800 MHz) or 1.25 V ± 5% (PLL >= 800 MHz) in Active mode The power management IC (Active-Semi PMIC)makes it possible to adjust the core voltage dynamically. Normally, core and PLL supply must be set to 1.25V to reach their maximum speed. If PCK ≤ 400 MHz, 1.15V is enough to save power. 3.1.6 Multi-port DDR-SDRAM Controller (MPDDRC) For the Multi-port DDR-SDRAM Controller (MPDDRC), external impedance match resistors are not necessary because the MPDDRC already has internal impedance matched. Therefore, adding external resistors may lead to higher consumption. Suggestions: 1. Do not add external impedance match resistors for MPDDRC. 2. Set the memory refresh cycle properly. Generating too many refresh commands will lower the memory bandwidth and SAMA5D3 performance. 3.1.7 GPIO In Low-power modes, the I/O state of SAMA5D3 can influence the power consumption of the external devices. For example, for some bidirectional I/Os with external pull-up/pull-down resistors, their states are uncertain when the CPU enters Low-power modes. This may lead to extra power consumption. Suggestion: Correctly configure the PIO to pull-up/pull-down, input/output, output (0/1) state. Using the Soft Modem as an e xample, set its two pads (DIBP to Pull-up state, DIBN to Pull-down state) to minimize power consumption. 24 Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 3.2 Optimizing Power Consumption of External Devices To minimize overall system-level power consumption, the power consumption of external devices must be taken into consideration. 3.2.1 General Guidelines Check the specification of each external device for the correlation between power consumption and the different working modes, then configure the device to work in the appropriate power mode. If the low-power requirement is still not met, shut down the external device by directly switching off its power supply when it is not used. 3.2.2 Examples on SAMA5D36-CMP Demo Board 3.2.2.1 LPDDR2 The SAMA5D3 supports DDR2 and LPDDR2, both of which can be set in Self-refresh mode when the Linux OS enters Standby/Suspend mode. It is recommended to use LPDDR2 instead of DDR2 in low-power applications because the power consumption level of LPDDR2 is only about 1/3 of that of DDR2 (refer to Table 3-3 for details), with both running at the same frequency. In addition, LPDDR2 can work at a much lower frequency thus saving more power, while there is a minimum frequency limitation for DDR2. Table 3-3 provides the power consumption comparison between LPDDR2 (on CMP) and DDR2 (on CM). Table 3-3. Power Consumption Comparison between LPDDR2 and DDR2 Current (µA) from Datasheet LPDDR2 MT42L128M32D1GU-25 WTA DDR2 * 2 MT47H128M16RT-25E:C 400 MHz Self-refresh Mode 122000 5683 324000 28800 Note: The LPDDR2 module on the CMP board is MT42L 128M32D1GU-25 WTA (512 MB, 32-bit); the DDR2 module on the CM board is MT47H128M16RT-25 (256 MB, 16-bit). 3.2.2.2 Gigabit Ethernet PHY The GMAC PHY chip (KSZ9031RNX) on the SAMA5D3 demo board has two power-down modes: software powerdown and chip power-down. The consumption in chip power-down mode is lower than that in software powerdown mode. However, it is important to note that once the GMAC PHY enters into chip power-down mode, the only way to exit is by hardware reset. 3.2.2.3 Device Shutdown If the LCD is not used, ensure that the LCD backlight is turned off, as it has the highest power consumption of the system. Put the LCD control IC into Standby mode. Ensure that the LCDC is disabled in the SAMA5D36. By implementating the suggestions for consumption optimization, the power consumption of the corresponding external devices can be reduced. Table 3-4 shows the change in power consumption figures after implementing the power-saving techniques on the SAMA5D36-CMP board. Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 25 Table 3-4. 4. Power Consumption of External Devices Consumption in Active Mode 5V (mA) Consumption in Low-Power Mode 5V (mA) Consumption Optimization Solution Expected Consumption 5V (mA) LCD 260 50 Disconnect DM board 0 G-PHY 90 13 Set to power-down mode 13 E-PHY 32 2 Set to power-down mode 2 COM 20 0.6 Disconnect cable 0.6 HDMI 4.7 4.7 Set to power-down mode 0 JTAG 36 36 Disconnect its power supply 0 Audio 0.1 0.1 Keep in power-down mode (after reset) 0.1 Other ICs 15 15 15 Total 457.8 121.4 30.7 Conclusion The SAMA5D3 series tar gets low-power applications. Its power consumption is significantly lowe r compared to some competitors’ similar products in both low-power and in active modes, without reduced performance levels. The SAMA5D3 is suitable for low-power applications, such as portable devices that require long battery life and a rich set of connectivity interfaces. The data provided in this application note may vary from board to board and from device to device, and de pends on the measurement conditions and type of equipment used. The data is for reference only. 26 Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 5. FAQ 1. When the demo board is powered on, why doesn’t the default demo show up? Please check the following points: Double check all the jumpers to make sure they are set correctly. If not, set them according to Figure 1-2. The demo might not be successfully flashed, or the NAND Flash might be erased. If so, re-flash the default demo as described in Section 1.2. If an amp meter is inserted for current measurement, the supply voltage might drop due to the impedance of the amp meter. Check the range selection of the meter. 2. Why does switching the test range of the amp meter cause the reset of the demo board? On some low-end amp meters, the current loop is cut off during range switching. 3. Why are the consumption nu mbers I get in some cases not exactly the same as those pro vided in this application note? The numbers provided in this application note are typical/average values. The actual values might vary slightly due to certain factors such as different ICs, PCB and temperature. The default demo is with a full DTB, in which most peripherals and drivers have been enabled. If you use the default demo for other different cases (where specific DTBs instead of the full DTB should be used), the power consumption will increase. 4. How can I wake up the system from Standby/Suspend mode when no DM board is connected? A push-button PB3 on the MB can be used to wake up the kit from Standby/Suspend mode. But as the pin for push-button PB3 is multiplexed as one LCD data line, for the default/LCD/ISI case, the push-button PB3 does not work and you must reset the kit. 5. In the USB host scenario, why is the current through VDDUTMII and VDDOSC abnormal in Low-power mode? In the current release, the USB transceiver and an internal bandgap for UTMI PHY cannot be stopped once they have been started or initialized. 6. Why is the wake-up time printed on the hyperterminal in this demo longer than that in datasheet? The wake-up time in the datasheet is the time from when the wake-up event occurs to when the core executes the first instruction. The wake-up time printed on the hyperterminal in this demo is from the wake-up event occurrence to system recovery. The extra time is used to resume device drivers. Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 27 Appendix A. SAMA5D36-CMP Schematics This section contains the following schematics: 28 Block diagram PIO Muxing & Jumper SAMA5D3x power SAMA5D3x NOR and NAND Flash SAMA5D3x Data Flash, 1-wire, LED 4Gb LPDDR2 Ethernet 200-pin SODIMM Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 5 D 4 S O D I M M C O N N E C T O R C PIO PIO PIO CONNECTOR CONNECTOR CONNECTOR B 3 2 1 5V INPUT D VBAT 128Mb NOR FLASH ANALOG Reference ATMEL ARMA5 PROCESSOR ATSAMA5D36-CU USB A,B,C DIB 4Gb LPDDR2 SDRAM EBI ICE 2Gb NAND FLASH PIO A,...E C PIO A,...E PIO A&D B PIO B&E 1-WIRE EEPROM PIO C TWO LED SERIAL DATA FLASH 10/100/1000 FAST ETHERNET A A C B A REV SAMA5D36-CMP JH JH JH MODIF. SCALE DES. 21-Jan-14 27-Sep-13 18-Jun-13 DATE 1/1 BLOCK DIAGRAM This agreement is our property. Reproduction and publication without our written authorization shall expose offender to legal proceedings. 5 4 3 2 1 X.X X.X X.X XX-XXX-XX XX-XXX-XX XX-XXX-XX VER. DATE REV. SHEET C 2 10 5 4 3 2 1 D D SAMA5D36 config JUMPER and SOLDERDROP PAGE C REFERENCE DEFAULT 4 JP2 CLOSE VDDCORE FUNCTION 4 JP3 CLOSE VDDUTMIC SAMA5D31 SCHEMATICS CONVENTIONS SAMA5D33 SAMA5D34 SAMA5D35 (1) Resistance Unit: "K" is "Kohm", "R" is "Ohm SAMA5D36 CAN0 CAN1 (2) "DNP" means the component is not populated by default GMAC EMAC 4 JP4 CLOSE VDDPLLA 4 JP6 CLOSE VDDIOM_MPU 4 JP7 CLOSE VDDBU 4 JP8 CLOSE VDDIOP1_MPU 4 JP9 CLOSE VDDIOP0_MPU 4 JP10 CLOSE FUSE_2V5 4 JP11 CLOSE VDDUTMII 4 JP12 CLOSE VDDOSC 4 TP18 SHDN 4 JP13 CLOSE VDDANA 4 R130 Option for NRSTO from PMIC 4 TP23 Output 6 ( LDO) of PMIC 4 JP14 OPEN CM-3V3 to MB-3V3 4 C190 Option for SHDN pulse edge power on PMIC 4 TP24 Output 7 ( LDO) of PMIC 4 JP15 CLOSE VDDIODDR_MPU_1V2 4 Q4 Option for nPBIN from MB button 5 TP25 PE0 ( EBI_A0 ) 4 JP17 CLOSE VCC_5V 4 C195 Option for delay NRST_CMP 8 TP6 DDR_VREF 4 JP18 CLOSE VCC_1V8 4 R133 Option for nPBSTAT to PD19 4 JP19 CLOSE VCC_3V3 4 JP14 Option for VCC_3V3 to MB 4 JP20 CLOSE VDDIOP1_GPHY 5 R54 Option for pull up JTAGSEL 4 JP21 CLOSE VDDIODDR_1V2 6 R1 Option for pull down WP of NAND flash 4 JP22 CLOSE VCC_1V2 8 R82, R83 Option for terminal DDR_CLK 7 JP1 CLOSE SPI0_NPCS0 for Dataflash 10 9 JP16 2-1 GPHY 1V2 from VCC_1V2 2-3 GPHY 1V2 from PMOS HSMCI2 LCDC USART0 USART1 TEST POINT ISI TC1 PAGE DEFAULT NO POPULATE PARTS PAGE REFERENCE FUNCTION R81 REFERENCE FUNCTION 4 TP4 NRST_CMP 4 TP10 WKUP C Option for PB13 to Sodimm B B A A C B A REV SAMA5D36-CMP JH JH JH MODIF. SCALE DES. 21-Jan-14 27-Sep-13 18-Jun-13 DATE 1/1 This agreement is our property. Reproduction and publication without our written authorization shall expose offender to legal proceedings. 4 3 2 1 XX-XXX-XX XX-XXX-XX XX-XXX-XX VER. DATE REV. SHEET C PIO Muxing & Jumper 5 X.X X.X X.X 3 10 5 4 3 2 1 Filter for VDDREF R98 1R C194 1uF VCC_5V_SOD MN16 C169 2.2uF ACT8865 C170 2.2uF NRST_CMP TP4 SMD WKUP TP10 SMD SHDN TP18 SMD JP17 C172 4.7uF 18 25 23 VDDREF VDDBU_SOD VCC_3V3 R102 10K R101 10K WKUP PD19 R107 0R R133 0R DNP R99 0R 20 R103 0R 17 13 R129 PC31 (TWCK1) (TWD1) PC27 PC26 12 330R NRSTO 11 PWRHLD 10 R119 R120 21 22 0R 0R 32 9 C184 47nF VP1 VP2 VP3 SHDN PWRHLD R100 1K 27 24 L17 15 19 L18 2 2.2uH C174 10uF SW2 OUT2 0R 100K 2 SW3 OUT3 C178 10uF C179 10uF C180 100nF C181 10uF C182 10uF C183 100nF 2 2.2uH nRSTO Discharge current on LPDDR2-VDD1 VCC_1V2 JP19 nIRQ VCC_3V3 1 PWRHLD JP13 SCL SDA OUT4 OUT5 REFBP OUT6 nPBIN OUT7 D 1 nPBSTAT 3 (3V3) R105 0R 4 (2V5) R106 0R 7 (1V8) 2 VDDANA 1 FUSE_2V5 JP10 8 TP23 SMD TP24 SMD 2 1 VDDIOP1 JP20 VDDIOP1_GPHY 2 1 C C185 4.7uF C186 4.7uF C187 4.7uF C188 4.7uF VCC_3V3 VDDIOM R124 VDDIOM_NOR 0R R125 VDDIOM_NAND 0R From PMIC VCC_3V3 NRSTO R131 100nF C190 DNP R114 100K R123 C175 10uF R109 51K 1 C197 10nF 1 2.2uH PWREN GA C189 100nF Enable or Disable DCDC VDDREF L16 Q2 BSN20 0R R132 51K 30 1 JP22 VSEL 3 R110 VCC_1V8 JP18 VDDREF 2 R108 WKUP_SOD SW1 OUT1 NC1 NC2 C Wake up and Force power on button on MB; the pull-up resistor on MB should DNP INL45 INL67 EP C173 4.7uF 5 6 33 C171 4.7uF 31 26 16 GP1 GP2 GP3 D 1 29 28 14 2 6 5 2 VDDIOM NRST_CMP 0R NRST_SOD C198 10nF 1 R113 1.5K 0R C195 100nF DNP Q4 Si1563EDH DNP Auto power on option DNP 4 2 C196 100nF R130 From MB push button, connect some device's reset input on MB 3 R134 100K VCC_1V2 JP2 B VCC_3V3 L1 180ohm at 100MHz 2 1 2 VDDIOM JP6 2 VDDBU_SOD R115 VDDIOP1 L11 180ohm at 100MHz 2 1 VDDIOP0 B 1 L19 10uH/150mA L12 180ohm at 100MHz 2 1 VDDCORE 1 VDDIOM_MPU JP8 2 VDDIOP1_MPU 1 JP3 2 0R C191 100nF 2 VDDUTMIC 2 R111 1R C192 4.7uF VDDIOP0_MPU L2 10uH/150mA JP11 2 L10 10uH/150mA C90 100nF VDDUTMII 1 JP12 2 0R JP14 DNP 2 VCC_3V3_SOD 1 1 R116 R117 1 1 VCC_3V3 JP9 VDDBU JP7 JP4 2 0R C3 100nF VDDPLLA Use when need feeding MB 3V3 1 R17 1R C2 4.7uF VDDOSC 1 R21 1R L20 120@100MHz,2A 1 2 A VDDIODDR_MPU_1V2 JP15 2 A 1 C100 4.7uF VDDIODDR_1V2 JP21 2 C B A 1 REV SAMA5D36-CMP JH JH JH MODIF. SCALE DES. 21-Jan-14 27-Sep-13 18-Jun-13 DATE 1/1 POWER This agreement is our property. Reproduction and publication without our written authorization shall expose offender to legal proceedings. 5 4 3 2 1 X.X X.X X.X XX-XXX-XX XX-XXX-XX XX-XXX-XX VER. DATE REV. SHEET C 4 10 5 4 3 2 1 VDDIOP1_MPU C97 100nF C73 100nF D D VDDBU VDDCORE VDDIOP0_MPU VDDIOP0 8 100K 7 100K 6 100K 5 100K C63 100nF C BMS VDDIOP0 VDDBU_SOD C46 100nF C75 100nF C48 100nF C79 100nF C52 100nF C80 100nF C82 100nF C81 100nF C101 4.7uF U15 U9 R15 10K R55 R53 100K 100K T10 T12 WKUP SHDN C5 C7 D14 T7 T15 U17 V7 VDDIOM_MPU VDDCORE_1 VDDCORE_2 VDDCORE_3 VDDCORE_4 VDDCORE_5 VDDCORE_6 VDDCORE_7 JTAGSEL TDI TMS TCK TDO NTRST NRST VDDIOP0_1 VDDIOP0_2 VDDIOP1_1 VDDIOP1_2 VDDBU T9 R8 N10 P9 M11 P11 V9 L11 M4 V15 R54 100K DNP G7 V11 VDDBU_SOD RR4A 1 RR4B 2 RR4C 3 RR4D 4 JTAGSEL TDI TMS TCK TDO NTRST NRST_CMP C72 100nF VDDIOM_1 VDDIOM_2 P12 T16 C51 100nF C61 100nF VDDIODDR_MPU_1V2 C VDDIODDR_1 VDDIODDR_2 VDDIODDR_3 VDDIODDR_4 VDDIODDR_5 TST BMS D13 F14 G10 G13 H11 C74 100nF C60 100nF C71 100nF 1 2 20pF U8 VDDFUSE 20pF V8 4 C6 3 20pF C8 20pF 1 VDDUTMII U6 V6 DIBN DIBP U13 R10 C5 100nF XOUT32 VDDUTMIC DIBN DIBP VDDUTMIC V13 C66 100nF B SUP1 B VDDANA L6 GNDANA GNDUTMI_1 ADVREF ADVREF L5 C85 100nF L4 GNDIOM_1 GNDIOM_2 R12 J11 T17 GNDIOP_1 GNDIOP_2 GNDIOP_3 GNDIOP_4 C106 100nF J7 N11 U7 E5 GNDIODDR_1 GNDIODDR_2 GNDIODDR_3 GNDIODDR_4 GNDIODDR_5 E14 F10 F13 F15 H14 GNDCORE_1 GNDCORE_2 GNDCORE_3 GNDCORE_4 GNDCORE_5 GNDCORE_6 GNDOSC GNDFUSE GNDPLL VBG A16 C9 N13 T8 T14 V17 R52 C62 5.62K 1% 10pF HHSDMC HHSDPC T11 P4 R11 VDDANA GNDBU V14 U14 HHSDMC HHSDPC GNDUTMI HHSDMB HHSDPB T13 V12 U12 HHSDMB HHSDPB HHSDMA HHSDPA P10 V10 U10 HHSDMA HHSDPA C17 100nF VDDPLLA XIN32 VDDPLLA V16 C128 100nF U11 XOUT 32.768 kHz 2 Y1 VDDUTMII C86 100nF VDDOSC MN4H ATSAMA5D36-CU U16 VDDOSC R3 XIN Y2 12MHz C10 C4 100nF WKUP SHDN FUSE_2V5 C11 C54 100nF GNDUTMI R51 0R DNP CA89405MF GNDUTMI A A C B A REV SAMA5D36-CMP JH JH JH MODIF. SCALE DES. 21-Jan-14 27-Sep-13 18-Jun-13 DATE 1/1 SAMA5D36-I&POWER This agreement is our property. Reproduction and publication without our written authorization shall expose offender to legal proceedings. 5 4 3 2 1 X.X X.X X.X XX-XXX-XX XX-XXX-XX XX-XXX-XX VER. DATE REV. SHEET C 5 10 5 4 MN4E ATSAMA5D36-CU MN4F ATSAMA5D36-CU D C DDR_A[0..13] DDR_A0 DDR_A1 DDR_A2 DDR_A3 DDR_A4 DDR_A5 DDR_A6 DDR_A7 DDR_A8 DDR_A9 DDR_A10 DDR_A11 DDR_A12 DDR_A13 DDR_D0 DDR_D1 DDR_D2 DDR_D3 DDR_D4 DDR_D5 DDR_D6 DDR_D7 DDR_D8 DDR_D9 DDR_D10 DDR_D11 DDR_D12 DDR_D13 DDR_D14 DDR_D15 DDR_D16 DDR_D17 DDR_D18 DDR_D19 DDR_D20 DDR_D21 DDR_D22 DDR_D23 DDR_D24 DDR_D25 DDR_D26 DDR_D27 DDR_D28 DDR_D29 DDR_D30 DDR_D31 DDR_BA0 DDR_BA1 DDR_BA2 DDR_RAS DDR_CAS DDR_CKE DDR_CLK DDR_CLKN B 3 DDR_CS DDR_WE DDR_DQM0 DDR_DQM1 DDR_DQM2 DDR_DQM3 DDR_DQS0 DDR_DQSN0 DDR_DQS1 DDR_DQSN1 DDR_DQS2 DDR_DQSN2 DDR_DQS3 DDR_DQSN3 B10 C11 A9 D11 B9 E10 D10 A8 C10 B8 F11 A7 D9 A6 DDR_A0 DDR_A1 DDR_A2 DDR_A3 DDR_A4 DDR_A5 DDR_A6 DDR_A7 DDR_A8 DDR_A9 DDR_A10 DDR_A11 DDR_A12 DDR_A13 H12 H17 H13 G17 G16 H15 F17 G15 F16 E17 G14 E16 D17 C18 D16 C17 B16 B18 C15 A18 C16 C14 D15 B14 A15 A14 E12 A11 B11 F12 A10 E11 DDR_D0 DDR_D1 DDR_D2 DDR_D3 DDR_D4 DDR_D5 DDR_D6 DDR_D7 DDR_D8 DDR_D9 DDR_D10 DDR_D11 DDR_D12 DDR_D13 DDR_D14 DDR_D15 DDR_D16 DDR_D17 DDR_D18 DDR_D19 DDR_D20 DDR_D21 DDR_D22 DDR_D23 DDR_D24 DDR_D25 DDR_D26 DDR_D27 DDR_D28 DDR_D29 DDR_D30 DDR_D31 DDR_CALN DDR_CALP M_EBI_A21 M_EBI_A22 M_EBI_A23 E9 B6 F9 R12 R9 R8 27R 27R 27R R40 0R R7 R10 R11 R41 0R 0R 0R 0R FLASH_A1 FLASH_A2 FLASH_A3 FLASH_A4 FLASH_A5 FLASH_A6 FLASH_A7 FLASH_A8 FLASH_A9 FLASH_A10 FLASH_A11 FLASH_A12 FLASH_A13 FLASH_A14 FLASH_A15 FLASH_A16 FLASH_A17 FLASH_A18 FLASH_A19 FLASH_A20 FLASH_A21 FLASH_A22 FLASH_A23 PE24 PE25 PE26 PE27 PE28 PE29 PE30 PE31 PE[23..31] PE23 NANDCLE NANDALE NCS0 VDDIOM_NOR R38 10K DDR_DQM0 DDR_DQM1 DDR_DQM2 DDR_DQM3 E18 D18 G18 F18 B17 A17 B13 A13 DDR_DQS0 DDR_DQSN0 DDR_DQS1 DDR_DQSN1 DDR_DQS2 DDR_DQSN2 DDR_DQS3 DDR_DQSN3 100nF C13 DDR_VREF R43 240R 1% 45 R36 100K 44 R59 100K 15 30 32 14 VDDIODDR_1V2 E13 1 NCS3 2 3 OE VCC IN OUT CLK DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 WAIT ADV# RFU1 RFU2 NC 34 36 39 41 47 49 51 53 35 37 40 42 48 50 52 54 M_EBI_D0 M_EBI_D1 M_EBI_D2 M_EBI_D3 M_EBI_D4 M_EBI_D5 M_EBI_D6 M_EBI_D7 M_EBI_D8 M_EBI_D9 M_EBI_D10 M_EBI_D11 M_EBI_D12 M_EBI_D13 M_EBI_D14 M_EBI_D15 56 46 26 27 13 C VDDIOM_NOR RST# WP# VCC VCCQ CE# OE# WE# VSS VSS VSS 33 38 C1 100nF 12 28 31 C12 100nF VPP NCS0 R37 470K 5 C32 100nF 4 GND MN3 MT29F2G08ABAEAWP VDDIOM_NAND MN4G ATSAMA5D36-CU D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D16 NCS3 R18 240R 1% 43 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 VDDIOM_NAND DDR_CS DDR_WE G12 E15 B15 D12 0R VDDIOM_NOR OE_Nandflash 29 25 24 23 22 21 20 19 8 7 6 5 4 3 2 1 55 18 17 16 11 10 9 R35 NRD NWE DDR_CKE DDR_CLK DDR_CLKN C8 B5 C12 FLASH_A1 FLASH_A2 FLASH_A3 FLASH_A4 FLASH_A5 FLASH_A6 FLASH_A7 FLASH_A8 FLASH_A9 FLASH_A10 FLASH_A11 FLASH_A12 FLASH_A13 FLASH_A14 FLASH_A15 FLASH_A16 FLASH_A17 FLASH_A18 FLASH_A19 FLASH_A20 FLASH_A21 FLASH_A22 FLASH_A23 VDDIOM_NAND DDR_RAS DDR_CAS B7 B12 A12 D MN10 JS28F128P33TF70A NRST_CMP DDR_BA0 DDR_BA1 DDR_BA2 G11 A5 1 TP25 SMD M_EBI_A0 P13 R14 R13 V18 P14 U18 T18 R15 P17 P15 P18 R16 N16 R17 N17 R18 N18 P16 M18 N15 M15 N14 M17 M13 M16 N12 M14 M12 L13 L15 L14 L16 MN1 NL17SZ126 C9 DDR_VREF DDR_D[0..31] PE0_A0/NBS0 PE1_A1 PE2_A2 PE3_A3 PE4_A4 PE5_A5 PE6_A6 PE7_A7 PE8_A8 PE9_A9 PE10_A10 PE11_A11 PE12_A12 PE13_A13 PE14_A14 PE15_A15_SCK3 PE16_A16_CTS3 PE17_A17_RTS3 PE18_A18_RXD3 PE19_A19_TXD3 PE20_A20_SCK2 PE21_A21/NANDALE PE22_A22/NANDCLE PE23_A23_CTS2 PE24_A24_RTS2 PE25_A25_RXD2 PE26_NCS0_TXD2 PE27_NCS1_TIOA2 PE28_NCS2_TIOB2 PE29_NWR1/NBS1_TCLK2 PE30_NWAIT PE31_IRQ_PWML1 2 NRD NWE_NWR0 NANDRDY K12 K15 K14 K16 K13 K17 J12 K18 J14 J16 J13 J17 J15 J18 H16 H18 M_EBI_D0 M_EBI_D1 M_EBI_D2 M_EBI_D3 M_EBI_D4 M_EBI_D5 M_EBI_D6 M_EBI_D7 M_EBI_D8 M_EBI_D9 M_EBI_D10 M_EBI_D11 M_EBI_D12 M_EBI_D13 M_EBI_D14 M_EBI_D15 L12 NCS3 L17 K11 NRD NWE L18 VDDIOM_NAND NRD R4 NWE R3 NANDCE R39 NANDRDY R6 R5 R2 NANDCLE NANDALE 0R 0R 100K 0R 10K 100K R1 10K DNP 16 17 8 18 9 7 19 1 2 3 4 5 6 10 11 14 15 20 23 24 35 21 22 38 CLE ALE RE WE CE R/B WP N.C1 N.C2 N.C3 N.C4 N.C5 N.C6 N.C7 N.C8 N.C9 N.C10 N.C11 N.C12 N.C13 N.C14 DNU1 DNU2 DNU3 I/O0 I/O1 I/O2 I/O3 I/O4 I/O5 I/O6 I/O7 I/O8_N.C I/O9_N.C I/O10_N.C I/O11_N.C I/O12_N.C I/O13_N.C I/O14_N.C I/O15_N.C 29 30 31 32 41 42 43 44 26 27 28 33 40 45 46 47 M_EBI_D0 M_EBI_D1 M_EBI_D2 M_EBI_D3 M_EBI_D4 M_EBI_D5 M_EBI_D6 M_EBI_D7 B VDDIOM_NAND VCC VCC VCC_N.C VCC_N.C VSS VSS VSS_N.C VSS_N.C 12 37 34 39 C34 100nF C33 100nF 13 36 25 48 NANDRDY A A C B A REV SAMA5D36-CMP JH JH JH MODIF. SCALE DES. 21-Jan-14 27-Sep-13 18-Jun-13 DATE 1/1 SAMA5D36-II&NOR&NAND This agreement is our property. Reproduction and publication without our written authorization shall expose offender to legal proceedings. 5 4 3 2 1 X.X X.X X.X XX-XXX-XX XX-XXX-XX XX-XXX-XX VER. DATE REV. SHEET C 6 10 5 4 3 2 1 VDDIOP1 C D VDDIOP1 PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 PC25 PC26 PC27 PC28 PC29 PC30 PC31 R71 470K PD11 PD10 PD12 (SPI0_MOSI) R79 (SPI0_MIS0) R76 (SPI0_SPCK) R77 5 2 6 0R 0R 0R R126 0R MN13 AT25DF321A 1 SI SO SCK 8 VCC CS 4 GND 1 C114 100nF 3 7 WP HOLD JP1 2 PC0_ETX0 PC1_ETX1 PC2_ERX0 PC3_ERX1 PC4_ETXEN PC5_ECRSDV PC6_ERXER PC7_EREFCK PC8_EMDC PC9_EMDIO PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 PC25 PC26 PC27 PC28 PC29 PC30 PC31 D8 A4 E8 A3 A2 F8 B3 G8 B4 F7 A1 D7 C6 E7 B2 F6 B1 E6 C3 D6 C4 D5 C2 G9 C1 H10 H9 D4 H8 G5 D3 E4 VDDIOP1 (SPI0_NPCS0) PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 PA8 PA9 PA10 PA11 PA12 PA13 PA14 PA15 PA16 PA17 PA18 PA19 PA20 PA21 PA22 PA23 PA24 PA25 PA26 PA27 PA28 PA29 PA30 PA31 R78 10K MN12 NL17SZ126 OE_Dataflash OE_Nandflash 1 2 PA0_LCDDAT0 PA1_LCDDAT1 PA2_LCDDAT2 PA3_LCDDAT3 PA4_LCDDAT4 PA5_LCDDAT5 PA6_LCDDAT6 PA7_LCDDAT7 PA8_LCDDAT8 PA9_LCDDAT9 PA10_LCDDAT10 PA11_LCDDAT11 PA12_LCDDAT12 PA13_LCDDAT13 PA14_LCDDAT14 PA15_LCDDAT15 PA16_LCDDAT16 PA17_LCDDAT17 PA18_LCDDAT18 PA19_LCDDAT19 PA20_LCDDAT20 PA21_LCDDAT21 PA22_LCDDAT22 PA23_LCDDAT23 PA24_LCDPWM PA25_LCDDISP PA26_LCDVSYNC PA27_LCDHSYNC PA28_LCDPCK PA29_LCDDEN PA30_TWD0 PA31_TWCK0 E3 F5 D2 F4 D1 J10 G4 J9 F3 J8 E2 K8 F2 G6 E1 H5 H3 H6 H4 H7 H2 J6 G2 J5 F1 J4 G3 J3 G1 K4 H1 K3 PC[0..31] MN4C ATSAMA5D36-CU 1 PA[0..31] MN4A ATSAMA5D36-CU PD13 D3 BAT54C 2 3 OE VCC SERIAL DATAFLASH VDDIOP1 5 C IN OUT 4 C123 100nF GND 3 D BOOT_CS_OFF VDDIOM B PD[0..31] MN4D ATSAMA5D36-CU PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7 PB8 PB9 PB10 PB11 PB12 PB13 PB14 PB15 PB16 PB17 PB18 PB19 PB20 PB21 PB22 PB23 PB24 PB25 PB26 PB27 PB28 PB29 PB30 PB31 PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PD8 PD9 PD10 PD11 PD12 PD13 PD14 PD15 PD16 PD17 PD18 PD19 PD20 PD21 PD22 PD23 PD24 PD25 PD26 PD27 PD28 PD29 PD30 PD31 K5 P1 K6 R1 L7 P2 L8 R2 K7 U2 K9 M5 K10 N4 L9 N3 L10 N5 M6 T1 N2 M3 M2 L3 M1 N1 L1 L2 K1 K2 J1 J2 R70 1.5K PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PD8 PD9 PD10 PD11 PD12 PD13 PD14 PD15 PD16 PD17 PD18 PD19 PD20 PD21 PD22 PD23 PD24 PD25 PD26 PD27 PD28 PD29 PD30 PD31 PE25 R72 MN14 DS2431P+ 2 0R IO GND PB0_GTX0 PB1_GTX1 PB2_GTX2 PB3_GTX3 PB4_GRX0 PB5_GRX1 PB6_GRX2 PB7_GRX3 PB8_GTXCK PB9_GTXEN PB10_GTXER PB11_GRXCK PB12_GRXDV PB13_GRXER PB14_GCRS PB15_GCOL PB16_GMDC PB17_GMDIO PB18_G125CK PB19_GTX4 PB20_GTX5 PB21_GTX6 PB22_GTX7 PB23_GRX4 PB24_GRX5 PB25_GRX6 PB26_GRX7 PB27 PB28 PB29 PB30 PB31 T2 N7 T3 N6 P5 T4 R4 U1 R5 P3 R6 V3 P6 V1 R7 U3 P7 V2 V5 T6 N8 U4 M7 U5 M8 T5 N9 V4 M9 P8 M10 R9 NC1 NC2 NC3 NC4 3 4 5 6 1 PB[0..31] MN4B ATSAMA5D36-CU B 1-WIRE EEPROM VCC_3V3 PE[23..31] R42 470R PE25 D1 Blue D2 red R48 100K PE24 1 2 3 R44 470R Q1 IRLML2502 LED A A C B A REV SAMA5D36-CMP JH JH JH MODIF. SCALE DES. 21-Jan-14 27-Sep-13 18-Jun-13 DATE 1/1 SAMA5D36-III&DATA&1-WIRE,LED This agreement is our property. Reproduction and publication without our written authorization shall expose offender to legal proceedings. 5 4 3 2 1 X.X X.X X.X XX-XXX-XX XX-XXX-XX XX-XXX-XX VER. DATE REV. SHEET C 7 10 5 4 3 2 1 LPDDR2 SDRAM DDR_D[0..31] D D U1A DDR_RAS DDR_CAS DDR_WE DNP R82 C129 51R DDR_CLK 51R DDR_CLKN 100nF P3 N3 M3 M2 M1 G2 F2 F3 E3 E2 DDR_CKE K1 K2 DDR_CLK DDR_CLKN J3 H3 DDR_CS L1 L2 DDR_DQS0 DDR_DQSN0 L6 L5 DDR_DQS1 DDR_DQSN1 G6 G5 CA0 CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8 CA9 DDR_A[0..13] DNP R83 DDR_RAS DDR_CAS DDR_WE DDR_A0 DDR_A1 DDR_A2 DDR_A3 DDR_A4 DDR_A5 DDR_A6 DDR_CKE DDR_CLK DDR_CLKN DDR_CS DDR_DQS0 DDR_DQSN0 C DDR_DQS1 DDR_DQSN1 1V8_VDD1 VCC_1V8 R112 DDR_DQS2 DDR_DQSN2 0R DDR_DQS3 DDR_DQSN3 VDDIODDR_1V2 DDR_DQM0 DDR_DQM1 DDR_DQM2 DDR_DQM3 1V2_VDD2 DDR_DQS2 DDR_DQSN2 P8 P9 DDR_DQS3 DDR_DQSN3 D8 D9 DDR_DQM0 DDR_DQM1 DDR_DQM2 DDR_DQM3 K5 H5 N7 E7 CKE0 CKE1 CK CK# CS0# CS1# DQS0 DQS0# DQS1 DQS1# DQS2 DQS2# DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31 N8 M8 M7 M9 M6 L7 L8 L9 G9 G8 G7 F6 F9 F7 F8 E8 T7 P6 T8 N5 P7 T9 R8 N6 E6 C8 B9 D7 E5 B8 D6 B7 DDR_D0 DDR_D1 DDR_D2 DDR_D3 DDR_D4 DDR_D5 DDR_D6 DDR_D7 DDR_D8 DDR_D9 DDR_D10 DDR_D11 DDR_D12 DDR_D13 DDR_D14 DDR_D15 DDR_D16 DDR_D17 DDR_D18 DDR_D19 DDR_D20 DDR_D21 DDR_D22 DDR_D23 DDR_D24 DDR_D25 DDR_D26 DDR_D27 DDR_D28 DDR_D29 DDR_D30 DDR_D31 C DQS3 DQS3# DM0 DM1 DM2 DM3 ZQ0 ZQ1 RFU1 RFU2 D3 C3 R86 240R 1% K3 L3 MT42L128M32D1GU-25 WT R87 0R R88 0R R89 0R 1V2_VDDCA 1V2_VDDQ 1V8_VDD1 U1B 1V2_VDD2 B 1V2_VDDCA R121 0R L14 10uH/150mA VREFCA R90 1R C143 100nF R91 1.5K 1% R92 C147 4.7uF C148 100nF 0R DDR_VREF C149 100nF R93 1.5K 1% 1V2_VDDQ R122 0R L15 10uH/150mA VREFDQ R94 1R C161 100nF R95 1.5K 1% R96 C165 4.7uF C166 100nF R97 1.5K 1% 1V2_VDDCA TP6 SMD 0R 1V2_VDDQ 100nF 100nF 100nF 100nF C133 C137 C134 C138 100nF 100nF 100nF 100nF 100nF 100nF C139 C135 C140 C136 C141 C142 B6 C1 R1 T6 B5 D2 G1 J7 P2 T5 F1 H1 N2 100nF C144 100nF C145 100nF C146 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF 100nF C7 C10 D5 E9 F10 H6 J6 K6 M10 N9 P5 R7 R10 C151 C152 C153 C154 C155 C156 C157 C158 C159 C160 C162 C163 C164 C167 100nF VREFCA VREFDQ A G3 J9 B2 B3 J2 R3 T2 T3 VDD1 VDD1 VDD1 VDD1 VDD2 VDD2 VDD2 VDD2 VDD2 VDD2 VDDCA VDDCA VDDCA VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VDDQ VREFCA VREFDQ NC1 NC2 NC3 NC4 NC5 NC6 VSS VSS VSS VSS VSS VSS VSS VSS VSSCA VSSCA VSSCA VSSQ VSSQ VSSQ VSSQ VSSQ VSSQ VSSQ VSSQ VSSQ VSSQ VSSQ VSSQ VSSQ DNU1 DNU2 DNU3 DNU4 DNU5 DNU6 DNU7 DNU8 DNU9 DNU10 DNU11 DNU12 C2 C5 D1 H2 P1 R2 R5 J8 B E1 J1 N1 C6 C9 D10 E10 F5 G10 J5 L10 M5 N10 P10 R6 R9 A1 A2 A9 A10 B1 B10 T1 T10 U1 U2 U9 U10 A C B A MT42L128M32D1GU-25 WT REV SAMA5D36-CMP JH JH JH MODIF. SCALE DES. 21-Jan-14 27-Sep-13 18-Jun-13 DATE 1/1 4Gb LPDDR2 This agreement is our property. Reproduction and publication without our written authorization shall expose offender to legal proceedings. 5 4 3 2 1 X.X XX-XXX-XX X.X XX-XXX-XX X.X XX-XXX-XX VER. DATE REV. SHEET C 8 10 5 4 3 2 1 AVDDL_PLL R26 D + C125 10uF AVDDH + C121 10uF C115 10nF C122 10nF C118 10nF R75 12.1K 1% 4.7K 1K R24 R23 R22 27R 27R 27R PB[0..31] G125CK PB18 INT_GETHR PB25 PB17 GMDIO C105 10nF C111 10nF C99 10nF + C96 10uF MN6 48 47 46 45 44 43 42 41 40 39 38 37 49 1 2 3 4 5 6 7 8 9 10 11 12 ETH0_RX1+ ETH0_RX1ETH0_TX2+ ETH0_TX2- KSZ9031RNI 48-pin QFN VDDIOP1_GPHY R64 R63 R58 R61 4.7K 4.7K 4.7K 4.7K MDC RX_CLK DVDDH RX_DV RXD0 RXD1 DVDDL VSS RXD2 RXD3 DVDDL TX_EN 36 35 34 33 32 31 30 29 28 27 26 25 R19 R20 27R 27R GMDC GRXCK PB16 PB11 C RR1C RR1D R65 3 4 27R 6 27R 5 27R GRX_CTL GRX0 GRX1 PB13 PB4 PB5 RR2A RR2B 1 2 8 27R 7 27R GRX2 GRX3 PB6 PB7 GTX_CTL PB9 27R GTXCK PB8 27R 27R 27R 27R GTX3 GTX2 GTX1 GTX0 PB3 PB2 PB1 PB0 R60 27R 13 14 15 16 17 18 19 20 21 22 23 24 NC1 DVDDL LED2 DVDDH LED1 DVDDL TXD0 TXD1 TXD2 TXD3 DVDDL GTX_CLK ETH0_RX2+ ETH0_RX2- AVDDH TXRXP_A TXRXM_A AVDDL TXRXP_B TXRXM_B TXRXP_C TXRXM_C AVDDL TXRXP_D TXRXM_D AVDDH KSZ9031RNX ISET NC2 XI XO AVDDL_PLL LDO_O RESET_N CLK125_NDO DVDDH DVDDL INT_N MDIO C119 10nF P_GND C120 10nF ETH0_TX1+ ETH0_TX1- C R69 R68 VDDIOP1_GPHY AVDDL + C124 10uF D NRST_CMP VDDIOP1_GPHY LDO_O L13 180ohm at 100MHz 1 2 27R C112 10nF XI XO VDDIOP1_GPHY C109 10nF DVDDL VDDIOP1_GPHY + C126 10uF C103 10nF C116 10nF C102 10nF C108 10nF C98 10nF C104 10nF R62 R34 4.7K RR2C RR2D RR3A RR3B B LED2 LED1 3 4 1 2 6 5 8 7 B AVDDL_PMOS 3 3 VCC_1V2 S AVDDL_PMOS L8 180ohm at 100MHz 1 2 1 C21 AVDDL_PLL 20pF XI 1 4 2 2 D_T D Y3 25MHz JP16 3 C193 22uF 1 G + C20 47uF C22 22uF LDO_O from PMIC PCB heat sink 1x1 inch copper ground A L9 180ohm at 100MHz 1 2 AVDDL L7 180ohm at 100MHz 1 2 DVDDL C18 4 AVDDH 2 Q3 FDT434P 20pF XO A C B A REV SAMA5D36-CMP JH JH JH MODIF. SCALE DES. 21-Jan-14 27-Sep-13 18-Jun-13 DATE 1/1 ETHERNET This agreement is our property. Reproduction and publication without our written authorization shall expose offender to legal proceedings. 5 4 3 2 1 X.X X.X X.X XX-XXX-XX XX-XXX-XX XX-XXX-XX VER. DATE REV. SHEET C 9 10 5 4 3 2 VCC_5V_SOD 1 VCC_5V_SOD J1 PE23 PE24 PE25 PE26 PA[0..31] PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7 PA8 PA9 PA10 PA11 PA12 PA13 PA14 PA15 PA16 PA17 PA18 PA19 PA20 PA21 PA22 PA23 PA24 PA25 PA26 PA27 PA28 PA29 PA30 PA31 D VDDIOM PC25 PC23 PC21 PC18 PC16 PC8 PC6 PC4 PC2 PC0 PWR_EN VCC_3V3_SOD PE27 PC10 PC12 PC14 PC27 PC29 PC31 VDDIOP0 R127 0R VDDIOP0_SOD PA0 PA2 PA5 PA7 PA9 PA11 PA12 PA14 PA16 PA18 PB[0..31] PB10 PB13 PB14 PB15 PB19 PB20 PB21 PB22 PB23 PB24 PB25 PB26 PB27 PB28 PB29 PB30 PB31 PA21 PA23 PA25 PA27 PA28 PA30 VDDANA A PD30 PD28 PD26 PD24 PD22 PD20 PD18 PD16 PD14 PC[0..31] PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 PC13 PC14 PC15 PC16 PC17 PC18 PC19 PC20 PC21 PC22 PC23 PC24 PC25 PC26 PC27 PC28 PC29 PC30 PC31 VCC_5V_1 VCC_5V_3 GND1 PE23 PE24 PE25 PE26 VDDIOM_1 PC25 PC23 PC21 GND3 PC18 PC16 PC8 PC6 PC4 PC2 PC0 Enable_0 VCC_5V_2 VCC_5V_4 VBAT PE29 PE30 PE31 GND2 VDDIOM_2 PC24 PC22 PC20 PC19 PC17 PC9 PC7 GND4 PC5 PC3 PC1 Enable_1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 VDDBU_SOD PE29 PE30 PE31 PD12 PD10 PD8 PD6 PD5 PD3 PD1 VDDIOP1 R128 0R VDDIOP1_SOD PB10 PB14 PB19 PB21 PB23 PB24 HHSDPA HHSDMA HHSDPB HHSDMB HHSDPC HHSDMC ETH0_TX1+ ETH0_TX1ETH0_RX1+ ETH0_RX1ETH0_TX2+ ETH0_TX2ETH0_RX2+ ETH0_RX2LED2 LED1 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 143 145 147 149 151 153 155 157 159 161 163 165 167 169 171 173 175 177 179 181 183 185 187 189 191 193 195 197 199 C31 1uF VDDIOM PC24 PC22 PC20 PC19 PC17 PC9 PC7 C29 4.7uF D PC5 PC3 PC1 BOOT_CS_OFF KEY C B 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 VCC_3V3_SOD VCC_3V3_1 VCC_3V3_3 Enable_2 NC1 PE27 PC10 GND5 PC12 PC14 PC27 PC29 PC31 VDDIOP0_1 PA0 PA2 GND7 PA5 PA7 PA9 PA11 PA12 PA14 PA16 PA18 GND9 PA21 PA23 PA25 PA27 PA28 PA30 VDDANA_1 PD30 GND11 PD28 PD26 PD24 PD22 PD20 PD18 PD16 PD14 GND13 PD12 PD10 PD8 PD6 PD5 PD3 PD1 VDDIOP1_1 GND15 PB10 PB14 PB19 PB21 PB23 PB24 GND17 USBA_DP USBA_DM GND18 USBB_DP USBB_DM GND19 USBC_DP USBC_DM GND_ETH1 ETH0_TX1+ ETH0_TX1ETH0_RX1+ ETH0_RX1GND_ETH2 ETH0_TX2+ ETH0_TX2ETH0_RX2+ ETH0_RX2GND23 LED2 LED1 VCC_3V3_2 VCC_3V3_4 Enable_3 ADVREF PE28 PC11 PC13 PC15 PC26 PC28 GND6 PC30 VDDIOP0_2 PA1 PA3 PA4 PA6 PA8 PA10 GND8 PA13 PA15 PA17 PA19 PA20 PA22 PA24 PA26 GND10 PA29 PA31 VDDANA_2 PD31 PD29 PD27 PD25 PD23 GND12 PD21 PD19 PD17 PD15 PD13 PD11 PD9 PD7 GND14 PD4 PD2 PD0 VDDIOP1_2 PB13 PB12 PB15 PB20 PB22 GND16 PB25 PB27 PB29 PB31 PB30 PB26 PB28 GND20 DIBP DIBN GND22 JTAGSEL WKUP SHDN BMS nRST nTRST TDI TCK TMS TDO RTCK GND24 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160 162 164 166 168 170 172 174 176 178 180 182 184 186 188 190 192 194 196 198 200 C30 10uF PE28 PC11 PC13 PC15 PC26 PC28 PE[23..31] PE23 PE24 PE25 PE26 PE27 PE28 PE29 PE30 PE31 ADVREF C127 1uF PC30 VDDIOP0_SOD PA1 PA3 PA4 PA6 PA8 PA10 C PA13 PA15 PA17 PA19 PA20 PA22 PA24 PA26 PA29 PA31 PD[0..31] PD0 PD1 PD2 PD3 PD4 PD5 PD6 PD7 PD8 PD9 PD10 PD11 PD12 PD13 PD14 PD15 PD16 PD17 PD18 PD19 PD20 PD21 PD22 PD23 PD24 PD25 PD26 PD27 PD28 PD29 PD30 PD31 VDDANA PD31 PD29 PD27 PD25 PD23 C28 1uF PD21 PD19 PD17 PD15 PD13 PD11 PD9 PD7 PD4 PD2 PD0 VDDIOP1_SOD R81 PB15 PB20 PB22 R80 27R DNP 0R PB13 PB12 PB25 PB27 PB29 PB31 PB30 PB26 PB28 B DIBP DIBN JTAGSEL WKUP_SOD SHDN BMS NRST_SOD NTRST TDI TCK TMS TDO A C B A REV SODIMM_2 SAMA5D36-CMP JH JH JH MODIF. SCALE DES. 21-Jan-14 X.X 27-Sep-13 X.X 18-Jun-13 X.X DATE 1/1 200-PIN SODIMM This agreement is our property. Reproduction and publication without our written authorization shall expose offender to legal proceedings. 5 4 3 2 1 XX-XXX-XX XX-XXX-XX XX-XXX-XX VER. DATE REV. SHEET C 10 10 6. Revision History Table 6-1. Deisgn Optimization for Low-Power SAMA5D3-based Systems App Note Rev. 11291A Revision History Doc. Rev. 11291A Changes 23-Jun-14 First issue Design Optimization for a Low-Power SAMA5D3-based System [APPLICATION NOTE] Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14 29 ARM Connected Logo XXXXXX Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com © 2014 Atmel Corporation. / Rev.: Atmel-11291A-ATARM-Low-Power-Design-for-SAMA5D3-based-Systems-Application-Note_23-Jun-14. Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be trademarks of others. DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is grant ed by t his doc ument or in conn ection with the sale of Atmel products. EXCEPT AS SE T F ORTH I N T HE ATMEL T ERMS AND CONDIT IONS OF SALES LOCATED ON THE ATMEL WEB SITE, A TMEL ASSUMES NO LI ABILITY WH ATSOEVER AND DISCLAIMS ANY EXP RESS, IMPLI ED OR ST ATUTORY W ARRANTY RELATING T O I TS P RODUCTS INCLUDING, BUT NO T LIM ITED T O, TH E IMPLIED W ARRANTY O F MERC HANTABILITY, FI TNESS FO R A P ARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY D IRECT, INDIR ECT, CONSEQUENTI AL, PU NITIVE, S PECIAL OR IN CIDENTAL D AMAGES (I NCLUDING, W ITHOUT L IMITATION, D AMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN A DVISED OF T HE POSSIBILITY OF SUCH DAMAGES. Atmel mak es no representations or warr anties with res pect to t he ac curacy or c ompleteness of the c ontents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained h erein. U nless spe cifically provided ot herwise, Atme l product s are not s uitable for , and s hall not be used in, automo tive ap plications. A tmel produc ts are not i ntended, authorized, or warranted for use as components in applications intended to support or sustain life. SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reaso nably be ex pected to re sult in significant per sonal injury or death (“Safety-Critical A pplications”) w ithout an Atmel officer's spec ific written consent. Safety-Critical Appli cations incl ude, wi thout li mitation, l ife s upport devices and s ystems, eq uipment or systems f or the operation of nuc lear fac ilities and weapons sy stems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.
© Copyright 2024 ExpyDoc