Applied Mathematical Sciences, Vol. 8, 2014, no. 102, 5079 - 5082 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.4154 Inequalities among Related Triplets of Fibonacci Numbers Sanjay Harne1, Bijendra Singh2, Gurbeer Kaur Khanuja2, Manjeet Singh Teeth3 1 2 Government Holkar Science College, Indore, M.P., India School of Studies in Mathematics,Vikram University, Ujjain, M.P., India 3 M.B. Khalsa College, Indore, M.P., India Copyright © 2014 Sanjay Harne et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper we consider Fibonacci inequalities and relate them through the sequence m n r r 1 defined by where n is a fixed natural number and F1 , F2 , F3 , ... are the ordinary Fibonacci numbers. Mathematics Subject Classification: 11B39 Keywords: Fibonacci sequence INTRODUCTION “Fibonacci inequalities” have been studied in a variety of contexts. Atanassov [3] considered the Fibonacci inequalities and relate them through the sequence mr r 0 defined by n 5080 Sanjay Harne et al. mr Fr Fn1r , where n is a fixed natural number and F1 , F2 , F3 , ....... are the ordinary Fibonacci numbers as defined in [4]. We consider the similar Fibonacci inequalities and relate them through the sequence mr r 1 defined by mr Fr Fn1r Fn2r , where n is a fixed natural number n and F1 , F2 , F3 , ....... are the ordinary Fibonacci numbers. Theorem: For every natural number k, the following inequalities for the elements of the sequence mk k 1 are valid : n (a) For n = 4k, (i) F1 F4k F4k 1 F3 F4k 2 F4k 1 ... F2k 1 F2k F2k 1 F2k 2 F2k 1 F2k F2k 4 F2k 3 F2k 2 ... F4k F1 F2 (ii) F2 F4k 1 F4k F4 F4k 3 F4k 2 .. F2k F2k 1 F2k 2 F2k 1 F2k F2k 1 F2k 3 F2k 2 F2k 1 .. F4k 1 F2 F3 (b) For n=4k+1, (i) F1 F4k 1 F4k 2 F3 F4k 1 F4k .. F2k 1 F2k 1 F2k 2 F2k 2 F2k F2k 1 F2k 4 F2k 2 F2k 1 .. F4k F2 F3 (ii) F2 F4k F4k 1 F4 F4k 2 F4k 1 .. F2k F2k 2 F2k 3 F2k 1 F2k 1 F2k 2 F2k 3 F2k 1 F2k .. F4k 1 F1 F2 (c) For n = 4k+2, (i) F1 F4k 2 F4k 3 F3 F4k F4k 1 .... F2k 1 F2k 2 F2k 3 F2k 2 F2k 1 F2k 2 F2k 4 F2k 1 F2k .... F4k 2 F1 F2 (ii) F2 F4k 1 F4k 2 F4 F4k 1 F4k .... F2k F2k 3 F2k 4 F2k 1 F2k 2 F2k 3 F2k 3 F2k F2k 1 .... F4k 1 F2 F3 (d) For n = 4k+3, (i) F1 F4k 3 F4k 4 F3 F4k 1 F4k 2 .... F2k 1 F2k 3 F2k 4 F2k 2 F2k 2 F2k 3 F2k 4 F2k F2k 1 .... F4k 2 F2 F3 (ii) F2 F4k 2 F4k 3 F4 F4k F4k 1 .... F2k F2k 4 F2k 5 F2k 1 F2k 3 F2k 4 F2k 3 F2k 1 F2k 2 .... F4k 3 F1 F2 Proof : case (a) (i) F1 F4k 4 F4k 5 F3 F4k 2 F4k 3 F4k 4 F4k 3 F42k 4 2F4k 2 F4k 3 Inequalities among related triplets of Fibonacci numbers 5081 F42k 3 F42k 4 F4k 2 F4k 3 F42k 4 F4k 3 ( F4k 3 F4k 2 ) 0 Thus, F1 F4k 4 F4k 5 F3 F4k 2 F4k 3 . This shows that the inequality (1.1) is valid for i = 1. F2i 1 F4k 2i 6 F4k 2i 7 F2i 1 F4k 2i4 F4k 2i 5 ..........(1.1) Let us assume that, for some i, 1 i k , the inequality (1.1) is true. For desired result, we use induction method and prove that the inequality F2i1 F4k 2i4 F4k 2i5 F2i3 F4k 2i2 F4k 2i3 ..........(1.2) is also true. But, F2i 1 F4k 2i 4 F4k 2i 5 F2i 3 F4k 2i 2 F4k 2i 3 2F42k 2i 3 F2i 1 3F4k 2i3 F4k 2i 2 F2i1 F42k 2i2 F2i 1 F2i2 F4k 2i2 F4k 2i3 F2i 1 F4k 2i2 F4k 2i 3 2F42k 2i 3 F2i1 F42k 2i 2 F2i1 (2F2i 1 F2i 2 ) F4k 2i 2 F4k 2i 3 2F42k 2i 3 F2i 1 F42k 2i 2 F2i 1 ( F2i 1 F2i ) F4k 2i 2 F4k 2i 3 0 Now, (ii ) F2 F4k 3 F4k 4 F4 F4k 1 F4k 2 ( F4k 1 F4k 2 ) ( F4k 1 2 F4k 2 ) 3 F4k 1 F4k 2 F42k 1 2 F42k 2 0 Thus, F2 F4k 3 F4k 4 F4 F4k 1 F4k 2 This shows that the inequality (1.3) is valid for i = 1. F2i F4k 2i5 F4k 2i6 F2i 2 F4k 2i3 F4k 2i4 ..........(1.3) Let us assume that for some i , 1 i k the inequality (1.3) is true. Then we must prove that the inequality (1.4) is also true. F2i 2 F4k 2i3 F4k 2i4 F2i4 F4k 2i 1 F4k 2i 2 ..........(1.4) But, F2i 2 F4k 2i 3 F4k 2i 4 F2i 4 F4k 2i 1 F4k 2i 2 F2i 2 ( F4k 2i1 F4k 2i 2 ) (2 F4k 2i2 F4k 2i1 ) ( F2i1 2 F2i2 ) F4k 2i1 F4k 2i2 F2i 2 (3 F4k 2i 1 F4k 2i 2 F42k 2i 1 2 F42k 2i 2 ) ( F2i 1 2 F2i 2 ) F4k 2i 1 F4k 2i 2 0 This shows that the inequality (1.4) is true and hence (ii) is true. Particularly, when k = 3, n becomes 12 which gives the following two results: 1) F1 F12 F13 F3 F10 F11 F5 F8 F9 F7 F6 F7 F8 F5 F6 F10 F3 F4 F12 F1 F2 5082 Sanjay Harne et al. 2) F2 F11F12 F4 F9 F10 F6 F7 F8 F7 F6 F7 F9 F4 F5 F11F2 F3 Similarly other cases can be proved. Corollary : For every natural number n the maximal element[1] and [2] of the sequence mk nk1 is F1 Fn Fn1 and the minimal element is Fn F1 F2 . REFERENCES 1. A.F. Alameddine, “Bounds on the Fibonacci Number of a Maximal Outerplanar Graph”, The Fibonacci Quarterly 36.3(1998): 206-10. 2. K.T. Atanassov. “One Extremal Problem” Bulletin of Number Theory & Related Topics 8.3 (1984): 6-12. 3. K.T. Atanassov, Ron Knott, Kiyota Ozeki, A.G. Shannon, Laszlo Szalay, “Inequalities among related pairs of Fibonacci Numbers”, The Fibonacci Quarterly (Feb. 2003):20-22. 4. V.E. Hoggatt,Jr. Fibonacci and Lucas Numbers, p. 59, Boston: Houghton-Mifflin, 1969. Received: January 15, 2014
© Copyright 2024 ExpyDoc