Viscosity of chalcogenide materials 1 2 2 Petr KOŠTÁL , Jaroslav BARTÁK , Jiří MÁLEK 1 Department of Inorganic Technology, University of Pardubice, Doubravice 41, Pardubice 532 10, Czech Republic 2 Department of Physical Chemistry, University of Pardubice, Studentská 573, Pardubice 532 10, Czech Republic E-mail: [email protected] Measuring methods Penetration method η – viscosity, F – applied force, r – radius of indenter, h – penetration depth, t – time of penetration F r 107.5-1013.5 Pa.s Introduction Extrapolation of viscosity data Chalcogenide materials have been widely studied since 1960s. Their unique electrical and optical properties designate them as suitable materials for various interesting applications. One of the most important physical parameters of each material is viscosity. Knowledge of viscous behavior is essential for technology and production of glassy materials. Furthermore, viscosity is in direct connection with structural relaxation of glass and with crystal growth in undercooled melt. Structural relaxation is very slow rearrangement of thermodynamically unstable glass toward equilibrium. This process is in fact very slow flow of material and hence it is influenced by viscosity. Cold crystallization process is influenced by diffusion which is determined also by viscosity. Why? study of crystallization and lack of data in region of melt indenter Se sample Vogel-Fulcher-Tammann VFT Avramov-Milchev AM 14 14 Lower annealing point 12 10 Dilatometric softening point log (/Pa.s) Deformation range log (/Pa.s) 104 - 1010 Pa.s plate 8 Littleton softening point 6 sample 4 plate Forming range Flow point log (/Pa.s) Viscosity glass transition 10 10 12 Parallel-plate method F Mauro–Yue–Ellison–Gupta–Allan MYEGA Selenium 14 12 As2Se3 Equations Transformation range h Model systems As2S3 Important physical parameter h η – viscosity, F – applied force, r – radius of indenter, h – penetration depth, dh/dt – penetration rate Where? low region of undercooled melt 8 6 4 2 8 0 -2 6 1,0 1,5 2,0 2,5 3,0 3,5 -1 1000/T [K ] 4 experimental data VFT fit MYEGA fit AM fit 2 Working point 0 2 η – viscosity, F – applied force, dh/dt – deformation rate, V – sample volume, h – sample height Melting point -2 1,5 0 2,0 2,5 Temperature Rotating cylinder method 3,0 3,5 1000/T [K -1] As2S3 Structural relaxation 100.5-101.5 Pa.s 14 12 12 η – viscosity, r1 – radius of inner cylinder, r0 – radius of outer cylinder, M – moment of force, h – height of the column of sliding melt, ω– angular velocity r0 h η – viscosity, G – instantaneous shear modulus, τ – relaxation time Crystallization log (/Pa.s) s a m p l e 10 Eη – apparent activation energy of viscous flow, Δh* – activation energy from Tool-Moynihan-Narayaswamy model r1 8 log (/Pa.s) 10 8 6 4 2 0 6 -2 1,0 1,2 1,4 4 1,6 1,8 2,0 2,2 -1 1000/T [K ] experimental data our data VFT fit MYEGA fit AM fit 2 Experimental data 0 Viscosity of selenium 16 log (/Pa.s) 10 8 1,0 1,2 1,4 B log = A + T - T0 A B T0 1,8 2,0 2,2 As2Se3 -3.97 ± 0.07 1195 ± 20 227 ± 1 Literature 12 12 10 Selenium viscosity data 8 S. Dobinski, J. Wesolowski, Bl int Acad polon Sci Let Part A 7 (1937) 7. M. Cukierman, D. R. Uhlmann, J Non-Cryst Solids 12 (1973) 199. K. M. Khalilov, B. B. Kuliev, Fiz Tverd Tela+ 7 (1965) 2847. K. Ueberreiter, H. J. Orthmann, Kolloid Z 123 (1951) 84. M. Kunugi, R. Ota, T. Yamate, J Soc Mater Sci Jpn 15 (1966) 567. S. U. Dzhalilov, S. O. Orudzheva, Zh Fiz Khim+ 60 (1966) 2130. R. C. Keezer, M. W. Bailey, Mater Res Bull 2 (1967) 185. D. E. Harrison, J Chem Phys 41 (1964) 844. J. Shanelova, PhD thesis, Pardubice (2001). G. Faivre, J. Gardissat, Macromolecules 19 (1986) 1988. 6 4 2 literature data our data VFT fit 0 -2 E. Jenckel, Z Elektrochem 43 (1937) 796. K. M. Khalilov, Izv An Azerb SSR 6 (1959) 67. K. Bernatz, I. Echeverria, S. Simon, D. Plazek, J. Non-Cryst. Solids 307 (2002) 790. F. Q. Yang, J. C. M. Li, J Non-Cryst Solids 212 (1997) 136. S. V. Nemilov, G. T. Petrovskii, J Appl Chem-USSR+ 36 (1963) 977. T. Shirai, S. Hamada, K. Kobayaski, J Chem Soc Jpn 84 (1963) 968. H. Krebs, W. Morsch, Z Anorg Allg Chem 263 (1950) 305. S. Hamada, N. Yoshida, S. T., B Chem Soc Jpn 42 (1969) 1025. C. M. Roland, P. G. Santangelo, D. J. Plazek, K. M. Bernatz, J Chem Phys 111 (1999), 9337. P. Koštál, J. Málek, J Non-Cryst Solids 356 (2010) 2803. As2S3 viscosity data J. Malek, Thermochim Acta, 311 (1998) 183. S.V. Nemilov, Fiz Chim Stekla, 5 (1979) 398-409. S.V. Nemilov, Solid State Phys, 6 (1964) 1375-1379. S. Tsuchihashi, Y. Kawamoto, J Non-Cryst Solids, 5 (1971) 286. A.S. Tverjanovich, D.Y. Somov, Neorg Mater, 32 (1996) 1149. S. Suzuki, Y. Kamiya, Y. Suzuki, T. Kobayashi, J Soc Mater Sci Jpn, 21 (1972) 143. N.E. Zhukina, G.M. Orlova, G.A. Chalabjan, Fiz Chim Stekla, 5 (1979) 223. G.Z. Vinogradova, S.A. Dembovskii, T.N. Kuzmina, A.P. Chernov, Zh Neorg Chim, 12 (1967) 3240. A.P. Chernov, S.A. Dembovskii, V.I. Machova, Izv Akad Nauk SSSR Neorg Mater, 6 (1970) 823. G. Chaussemy, J. Fornazero, J.M. Mackowski, J Non-Cryst Solids, 58 (1983) 219. As2Se3 viscosity data 1,5 1,6 1000/T [K -1] 2,0 2,5 3,0 3,5 1000/T [K-1] M. Kunugi, R. Ota, M. Suzuki, J Soc Mater Sci Jpn, 19 (1970) 145. S.V. Nemilov, G.T. Petrovskii, J Appl Chem-USSR, 36 (1963) 977. J. Malek, J. Shanelova, J Non-Cryst Solids, 351 (2005) 3458. D.W. Henderson, D.G. Ast, J Non-Cryst Solids, 64 (1984) 43. B.T. Kolomiets, V.P. Pozdnev, Sov Phys-Sol State, 2 (1960) 28. 10 8 log (/Pa.s) 12 0,8 log (/Pa.s) 14 -2 UR – reduced rate of crystal growth, ΔG – Gibbs energy accompanying transformation, u – crystal growth rate, η –viscosity, ΔT – undercooling (Tm – T), Tm – temperature of melting, T – temperature, ΔHm – enthalpy of melting 6 4 2 0 6 -2 1,0 1,2 4 1,4 1,6 1,8 2,0 2,2 -1 1000/T [K ] 2 A.P. Chernov, S.A. Dembovskii, V.I. Machova, Izv Akad Nauk SSSR Neorg Mater, 6 (1970) 823. G.M. Orlova, S.S. Udalov, E.N. Manachova, Fiz Chim Stekla, 11 (1985) 215. P.J. Webber, J.A. Savage, J Mater Sci, 16 (1981) 763. A. Kadoun, G. Chaussemy, J. Fornazero, J.M. Mackowski, J Non-Cryst Solids, 57 (1983) 101. A.S. Tverjanovich, I. Skorobogatova, Fiz Chim Stekla, 16 (1990) 369. experimental data VFT fit MYEGA fit AM fit 0 Viscosity equations Vogel-Fulcher-Tammann equation according to Mauro et al. H. Vogel, Phys Z 22 (1921) 645. G. Tammann, W. Hesse, Z Anorg Allg Chem 156 (1926) 245. I. Avramov, A. Milchev, J Non-Cryst Solids 104 (1988) 253. G. S. Fulcher, J Am Ceram Soc 8 (1925) 339. J. C. Mauro, Y. Yue, A. J. Ellison, P. K. Gupta, D. C. Allan, PNAS 106 (2009) 19780. Acknowledgment ∞ m T12 -3.97 ± 0.07 64.4 ± 0.6 301.9 ± 0.1 The authors thank to project CZ.1.07/2.3.00/20.0254 “ReAdMat Research Team for Advanced Non-Crystalline Materials” cofinanced by the European Social Fund and the state budget of the Czech Republic. -2 0,8 1,0 1,2 1,4 1,6 1,8 2,0 2,2 2,4 1000/T [K -1] Experimental viscosity data for given systems were fitted by mentioned equations in the regions of undercooled melts and glasses. Inset figures show extrapolations of fits to region of melt with no fixation. Major figures show these extrapolations with fixed parameter log ∞(T→∞) to -5 (according to Angell plot). CEEC-TAC 2, Vilnius, Lithuania
© Copyright 2024 ExpyDoc