Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service Fatigue resistance of wing materials from the teardown of AIRBUS A320 aircraft at the end of life Residual fatigue properties of a 2024-T351 aluminium alloy from the teardoawn of AIRBUS A320 wing panelsoafter service Gilbert HENAFF 1 Fabien BILLY 1 – Guillaume BENOIT 1 – Sjoerd VAN-DER-VEEN 2 1 Pprime Institute UPR CNRS 3346 Physics and Mechanics of Materials Departement ISAE-ENSMA • Téléport 2 1 avenue Clément Ader • BP 40109 86961 FUTUROSCOPE - CHASSENEUIL Cedex, FRANCE 2 Airbus Materials & Processes, ESW - Sub-domain Research & Industrialisation, ESW1 D41, 18 rue Marius Tercé 31000 Toulouse, FRANCE 1 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service Context of the study ~ 500 aircrafts dismantled between 2010 and 2013 6000 at 7000 commercial aircrafts will reach their age limit within 20 years Evolution of regulations on management of the end of life Industrial ecology Aircraft Cemetery Teardown 2 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service DIAGNOSTAT Project • French National program sponsored by Interministerial Fund (2008 – 2012) • Endorsed by competitiveness cluster • Project leader : – 4 industrial partners whose – 6 public laboratories 3 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service DIAGNOSTAT Project Development of innovative diagnostic tools on aircraft at the end of life – Securing market for spare parts – Inspection without disassembly, improvement aircraft maintenance Development of a statistical tool to capitalize on knowledge generated by the diagnostics of aircraft at the end of life, characterizing the actual aging – Validation of rules of aircraft design (enhanced security) and redefinition of the end of life; – Improving the future aircraft design, 4 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service Pprime studies in DIAGNOSTAT project Study parts and structures of aircrafts after teardown to have a feedback on the aircraft structural health and to create a database of defects. Two topics addressed : - Ageing of Carbon/Epoxy Composite (T300/914) materials from ATR72 and Falcon F10 aircrafts - Residual fatigue strength of 2024-T351 aluminium alloy from wing panels of an AIRBUS A320 5 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service AIRBUS A320 MSN004 First A320 to be dismantled in 2008 after: •21 years of service •38 617 flights (35342 hours) 6 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service Objectives AA2024-T351 Saturated solid solution < 130ºC GP zones GPB zones 165ºC Precipitation θ’’ Precipitation S’ 200ºC Precipitation θ’ Precipitation S Al2CuMg Precipitation θ > 300ºC Al2Cu Metastable structure → Assesment of the impact of ageing on residual fatigue properties ? 7 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service Areas under investigation Area close to the engine and the pylon : higher wing loading, higher mechanical stress forward Area near wing tip : lower wing loading, lower mechanical stress 8 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service Wing materials Wing Length 2024-T351 laminated Aluminium alloy L TC [1] TL % weight (1) S precipitation: Al2CuMg Cu Mg Mn Fe Si Zn Ti Cr 3.8 – 4.9 1.2 – 1.8 0.3 – 0.9 < 0.5 < 0.5 < 0.25 < 0.15 < 0.1 (2) θ precipitation: Al2Cu (3) Al-Cu-Mg-Mn-Fe-Si particles (4) Al-Cu-Mn-Fe particles (5) Matrix [1] C. Larignon, “Mécanismes d'endommagement par corrosion et vieillissement microstructural d'éléments de structure d'aéronef en alliage d'aluminium 2024T351,” PhD.,Université de Toulouse, 2011. 9 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service Material characterization : Tensile tests UTSpristine material < UTSwing tip < UTSarea close engine YSpristine material < YSwing tip < YSarea close engine 10 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service 65 mm 12 mm Residual fatigue life Mechanical polishing 1 µm R = σmin / σmax = 0.1 th. 3 mm 20 Hz Numbers of cycles to failure 250 – 400 MPa L and T directions 11 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service Residual fatigue life No significant difference in residual fatigue resistance 12 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service Residual fatigue life Differences in strength noticed in tensile tests Normalization by the yield strength No significant difference 13 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service SEM observations of the fracture surfaces Fracture PropagationPropagation Initiation Fracture Initiation Secondary initiation Pristine, 250 MPa Wing tip, 300 MPa 14 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service SEM observations of the fracture surfaces Pristine, 300 MPa Wing tip, 250 MPa Wing tip, 300 MPa 15 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service SEM observations of the fracture surfaces Presence of facets Pristine, 300 MPa reminiscent of Stage I-like propagation [2] Local propagation along {111} planes No clear trend found … Wing tip, 250 MPa [2] J. Petit, Some aspects of near-threshold fatigue crack growth: microstructural and environmental effects, Fatigue Crack Growth Tresholds Concepts, TMS, Philadelphia, Pa, D.L. Davidson and S. Suresh Eds, 3-25 (1983). Wing tip, 300 MPa 16 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service SEM observations of the fracture surfaces Fatigue striations Interstries : 8,91.10-8 m 1,96.10-7 m 3,85.10-7 m 1,04.10-6 m Pristine, 250 MPa Images MEB FEG Florence HAMON 17 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service CCT W40 Fatigue crack growth resistance Mechanical polishing 1µm R = 0.1 20 Hz Optical observation of the crack growth Plot of fatigue propagation rate function of Amplitude of the stress intensity factor (∆K) 18 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service Fatigue crack growth resistance 10 -5 10-5 Wing engine area L-T wing_engine wing tip L-T ●Wing engine area T-L wing tip T-L wing tip L-T Wing tip L-T ● Wing wing tip tip T-L T-L ■ ■ pristine L-T pristine L-T da/dN (m/cycle) LT1 10 da/dN (m/cycle) T-L -6 -6 da/dN (m/cycle) NASGRO T-L NASGRO L-T 10 -7 10 da/dN (m/cycle) L-T -7 10 Pristine material L-T NASGRO T-L --- NASGRO L-T 10 -8 10-8 5 6 7 8 9 10 20 ∆K (MPa x m ) 1/2 30 5 6 7 8 9 10 ∆K (MPa x m 20 1/2 ) 19 30 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service Analysis of fatigue data EIFS (Equivalent Initial Flaw Size) type approach [14] using the AFGROW software package and the NASGRO crack growth law: Estimation of the initial defect size leading to fracture in a number of cycles equal to the experimental fatigue (Exemple : 21647 cycles vs. 21658 cycles exp) Surface or edge corner [W. S. Johnson, “The history, logic and uses of the Equivalent initial Flaw Size approach to total fatigue life prediction,” Procedia Engineering, vol. 2, no. 1, pp. 4758, 4//, 2010 20 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service Crack growth rates da/dN or interstriation spacing (m) 10 -5 Pristine Wingtip AFGROW 10 -6 10 -7 σ =250MPa max 10 -8 0 5 10 -4 1 10 -3 1,5 10 -3 2 10 -3 2,5 10 -3 3 10 -3 crack depth (m) 21 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service Initial defect size 100µm Wing tip, 400 MPa Initial defect size: 85 x 85 µm² AFGROW : 90,5 x 90,5 µm² 22 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service Secondary initiation sites Pristine, 300MPa Engine area, 400MPa Wing tip, 300MPa Wing tip, 400MPa 23 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service Initial defect size Experiments σmax (MPa) Specimen Afgrow computations Defect Size (µm) Localisation Nf c Defect Size (µm) a=c Nf c FPE-RL-09 face 30,5 28,5 309710 55,8 309900 FPE-RL-11 corner 54,5 60,6 161488 82,1 161450 FPE-RL-01 face 88,7 38,7 71317 89,8 71345 Pristine 250 300 400 FPE-RL-05 face 90,9 54,5 93912 69,6 93925 FPE-RL-03 corner 56,6 56,6 25466 76,4 25476 Average 64,24 47,78 74,74 FPE-IL-07 internal ? 6434198 - - FPE-IL-09 corner 93 27,9 185003 73,9 185020 FPE-IL-01 edge - - 78298 82,1 78282 FPE-IL-06 edge - - 81579 78,6 81611 FPE-IL-03 corner 83,3 83,3 21658 90,5 21647 FPE-IL-04 edge - - 21352 97,3 21358 Average values 88,15 55,6 FPE-IL[5-8]-05 edge - - 268202 42,2 268188 FPE-IL[5-8]-07 corner 83,3 83,3 114763 76,2 114752 FPE-IL[5-8]-01 face - - 175572 40,3 175360 FPE-IL[5-8]-11 edge 58,8 58,8 81973 78,2 82019 FPE-IL[5-8]-06 edge 83,3 58,3 35438 57,6 35431 FPE-IL[5-8]-08 corner 72,9 62,5 40292 47,7 40297 Average values 74,575 65,725 Wing tip 250 300 400 84,48 Engine area 275 300 400 57,03 24 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service Initial defect size 35 percentage of tested samples (%) 30 experimental calculation 25 20 15 10 5 0 10 20 30 40 50 60 70 80 90 Initial defect size (µm) 25 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service Initial defect size 100 Cumulated probability 80 experimental calculation 60 40 20 0 0 20 40 60 80 100 120 140 Intial defect size (µm) 26 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service Summary No significant difference in fatigue resistance between AA2024T351 from wing panels of a decommissioned AIRBUS A320 aircraft and a pristine alloy in: • • • Fatigue lives Fatigue crack growth rates Fracture modes Not statistical → need of additional data obtained on several aircrafts, from different fleets etc.. Interest of comparing fatigue properties under actual wing load spectrum 27 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service Artificial ageing 1.1 σ max / Re 0.2% 1 0.9 0.8 0.7 0.6 1.00E+04 1.00E+05 1.00E+06 Total cycles to failure reference-t0 t55 t0 t177 t27 aging wing + additional data on fatigue resistance in the presence of corrosion defects as a function of ageing 28 Residual fatigue properties of a 2024-T351 aluminium alloy from the teardown of AIRBUS A320 wing panels after service Thank you Questions ? 29
© Copyright 2025 ExpyDoc