Axion Dark matter and detection

Axion Dark matter and detection
John Hopkins Workshop
Heidelberg, June 2014
Javier Redondo (LMU/MPP Munich)
outline
- Axions and strong CP
- Axion CDM
- Isocurvature problems
- Detecting Axion CDM
- Cavities
- Dish antenna
The strong CP “hint” and axions
- U(1)A is color anomalous, CP-violating phase θ = θQCD + δ is physical
LSM

mu e
0
∈ −¯
qL 
0
iδ
0
md eiδ
0


...
u
αs �
...   d  −
GG θQCD
8π
... R
...
Neutron EDM
dn ∼ θ × O(10−2 )[e fm]
dexp
< 3 × 10−13 [e fm]
n
g
JAµ
∂µ J5µ
q
g
θ < 10−10 !!
- why is soooo small? is there any fundamental reason?
massless q?
P,CP symmetries?
- (not in SM)
- set tree level
- loop problems
- still ~ok
Axion a
- New axial U(1) c.a. symmetry
- spontaneously broken (PGB!)
- θ promoted to field θ → a/fa
- QCD potential
V (θ)
θ→0
eff
θ
Axion mass and couplings (and model dependencies)
- Peccei-Quinn symmetry, color anomalous, spontaneously broken at fa
¯
¯ L QR Φ + h.c) − λ|Φ|4 + µ2 |Φ|2
L = LSM + iQDQ
− (y Q
Φ(x) = ρ(x)e
i
a(x)
fa
(KSVZ model)
- At energies below fa
1
αs � a
2
L ∈ (∂a) +
GG
2
8π
fa
- At energies below ΛQCD ,
axion mass
a − η � − π 0 − η − ... mixing
mπ fπ
109 GeV
ma �
∼ 6meV
fa
fa
axion couplings
La,I =
�
N
a
α
µ
µν a
¯
�
cN,a N γ γ5 N
+ caγ Fµν F
+ ...
fa
2π
fa
nucleons ...
photons ...
mesons ...
Parameter spaces: generic
fa �GeV�
2.0
1014 1013 1012 1011 1010
109
108
107
106
105
104
103
102
101
Hot�DM � CMB � BBN
1.5
Cold DM predictions
1.0
PreInflation�PQ
0.5
PostInflation�PQ
SK
Burst Duration
?
�gae �
?
SN1987A
Globular Clusters �gaΓ �
White Dwarfs �gae �
Solar Neutrino flux �gaΓ �
�gae �
0.0
ADMX
ADMX�II
IAXO
Beam
Dump
Telescope
CAST
�0.5
ma �eV�
10�7 10�6 10�5 10�4 10�3 10�2 10�1
1
10
102
103
104
105
106
- Axions (if existing) are very light and very weakly interacting! -> WISP!
Axion cold dark matter: vacuum alignment
- Axions: small mass, small interactions,
thermal DM
time, 1/T
- non-thermal DM, Initial conditions
Domains=horizon
Cosmic strings
Damped
oscillations=CDM
θ=0
SSB
QCD
D. Walls
strings
Axion cold dark matter: vacuum alignment
- Axions: small mass, small interactions,
thermal DM
SCENARIO-I
- non-thermal DM, Initial conditions
time, 1/T
realignment+CS+DWs
Domains=horizon
Cosmic strings
SSB
O(1) inhomogeneous
DM
θ=0
QCD-horizon scale
QCD
miniclusters D.Walls
Damped
oscillations=CDM
strings
Axion cold dark matter: vacuum alignment
- Axions: small mass, small interactions,
thermal DM
time, 1/T
- non-thermal DM, Initial conditions
Damped
oscillations=CDM
INFLATION!!
SSB
θ=0
QCD
D. Walls
strings
Axion cold dark matter: vacuum alignment
- Axions: small mass, small interactions,
thermal DM
SCENARIO-II
- non-thermal DM, Initial conditions
realignment only
INFLATION!!
SSB
θ=0
QCD
D. Walls
time, 1/T
Damped
oscillations=CDM
strings
Rough relic abundance of axion Dark matter
- Energy density redshifts as matter, from the onset of oscillations
ρa (t) ∼
2 4
θI ΛQCD
�
R1
R0
�3
�
∼
- today...
ρa (t0 ) ∝
R1
R(t)
�
T0
T1
�3
∼
�3
�
T
√ 0
H1 mPl
�3
∼
�
T0
√
ma mPl
�3
∝ m−3/2
a
- doing it properly... (thermal axion mass)
2 −3/2
θ I ma
ρa (t0 ) ∝
2 −7/6
θ I ma
Axion DM abundance fitting the observations
fa �GeV�
2.0
1014 1013 1012 1011 1010
109
108
107
Cold DM predictions
104
103
PreInflation�PQ
?
PostInflation�PQ
Excluded
(too
much DM
0.5
ADMX�II
�gae �
?
102
101
IAXO
SN1987A
Globular Clusters �gaΓ �
White Dwarfs �gae �
Solar Neutrino flux �gaΓ �
�gae �
SCENARIO-I
ADMX
SK
Burst Duration
SCENARIO-II
0.0
105
Hot�DM � CMB � BBN
1.5
1.0
106
Beam
Dump
Telescope
CAST
�0.5
ma �eV�
10�7 10�6 10�5 10�4 10�3 10�2 10�1
1
10
102
103
104
105
106
The isocurvature problem after BICEP2
SCENARIO-II
- Axion fluctuates during inflation (entropy perturbations)
Piso
HI2
HI2
d�na �
d�a2 �
= 2 2 = 2 2 2
=
∼
na
a2I
π aI
π f a θI
insisting on axion DM θI = θI (fa )
Constraint fa (HI ) ,
BICEP2 would exclude SC-II
in the simplest models...
of course, there are plenty
of ways out ...
f a � HI
EXCLUDED
Laboratory
Experiments to detect axion DM
- Dish antenna
DM a
photon to detect!
B-field
- Cavity experiments
DM a
amplify and detect
B-field
- Light propagation
B
E
x
- Oscillating EDM
DM around us
ρCDM
GeV
1 2 2 2
� 0.3
= ma na � ma fa θ
3
cm
2
velocities in the galaxy
phase space density
θ ∼ O(10−19 )
v � 300 km/s ∼ 10−3 c
�
�4
µeV
na
29
∼ 10
4πp3
ma
3
occupation number is HUGE!
a(t) = a0 cos(ma t)
Roughly ...
Fourier-transform
still can treat it like a classical (NR) field
ma v 2
δω =
2
a(x)
ω � ma (1 + v 2 /2 + ...)
δω
∼ 10−6
ω
ω
ma
E-fields from axion CDM in a B-field
α a
LI = −caγγ
B·E
2π fa
- In a static magnetic field, the oscillating axion field generates EM-fields
α
LI = −caγγ θ(t) Bext · E
2π
B-field
- Electric fields of order
|E| ∼ O(10−12 V /m)|Bext | cγ cos(ma t)
- oscillating at a frequency given by the axion mass
Do not depend on mass or coupling strength!
Detecting EM fields from Axion Dark Matter
- Haloscope (Sikivie 83)
“Amplify resonantly the EM fields created by axionDM in a B-field in a cavity”
(on resonance)
ν[GHz]
10�1
1
103
103
RBF
- Past experiments Florida U., RBF, ADMX, CARRACK
- Future endeavors: ADMX, ADMX-HF, YMCE, CAPP
- Noise
Pnoise = Tsys ∆νa ∝ m2a
- Signal/noise in ∆νa of time, t,
1
m2a
S
Pout �
=
∆νa t
N
Pnoise
c4γ
1 d∆ma
- Scanning rate
∝ 9
ma dt
ma
ADMX
DFSZ
Scenario
I
10�1
10�7
10�6
10
CARRACK?
Pout ∝ V ma ∼
1
ADMX
cγ
KSVZ
UF
ADMX-HF
102
10
Cylindrical cavity (h/r=b) like ADMX but scaled
(V ∝ m−3
a )
IAXO
102
- Parameters unexplored at low and high masses: WHY?
- Signal
102
10
ADMX2
P ∼ Q|Ea |2 (V ma )Gκ
II
10�4
10�5
1
10�1
10�3
ma [µeV]
Very easy, but needs
large magnet volume!
Very complicated,
needs new ideas...
DM searches with future IAXO (International Axion Observatory)
field map of transverse cut
-
Length = 20 m
Magnetised radius ~ 1 m
Peak value ~ 5.4 T
Average in bore 2.5 T
Available T ~ 4.5 K
(but warm bores in design)
2
x[m
1
y[m]
0
�1
�2
- Sensitivity
�2
Big cavity
(realistic)
�1
0
x[m]
1
Many flat (exploit the huge volume)
(very speculative, R&D needed!)
2
Simplest experiment: Dish antenna
2
−26
P ∼ |E| Adish ∼ 10
spherical reflecting dish
Horns at al JCAP04(2013)016
�
B cγ
5T 2
�2
Adish
Watt
2
1m
Simplest experiment: Dish antenna
Ν�GHz�
1
ρCDM
cΓ
0.3GeV
∼
cm3
1
102
ADMX�HF
O(10^6) channels
10
KSVZ
1
DFSZ
HS
CARRACK
10�1
�2
ADMX�II
10
A=10m2, T=QL, B=10T, t=1year,
ADMX
A=10m2,T=5K, B=5T, t=1year,
BFRT
ADMX
102
102
10
HKS
Post�Inflation�PQ
DS
Pre�Inflation�PQ
10�2
10
10�6
ma �eV�
:-)
broadband!
10�5
10�1
measure 1/octave of a decade
with the same detector at the
same time
10�4
10�3
δω
∼ O(1)
ω
Possible improvement
Enhance the emissivity by multilayers of dielectric
|Ea | → |Ea | × N
Ν �GHz�
102
Increases sensitivity
but losses bandwidth
boostΧeff�Χ
factor
+ back production and all reflexions ...
102
10
102
4 layers tuned lambda/2
10
10
1
1
10�1
10�2
10�5
10�1
10�4
ma �eV�
10�2
10�3
Dish antenna and miniclusters
- Typical Dish antenna experiments fall a bit short,
3
if the DM density is just ρCDM = 0.3GeV/cm
- 0.1-1 meV range is most interesting in Scenario-II
1
103
103
8-Dish IAXOQL
102
102
8-Dish IAXOSYS
10
- S-II predicts miniclusters of axion CDM
Mmc ∼ 10−12 M⊙
Ωmc /ΩaCDM ∼ O(1)
Zurek et al 07, See also Kolb & Tkachev 94
- Encounter with the Earth (every 104 years)
ρCDM × 106 , Qa ∼ 109 , t ∼ 3days
102
10
cγ
Scenario II
1
10�1
10�6
10�4
10�5
ma [eV]
- Even with a modest realistic experiment one can get a huge signal ! (if lucky...)
10
1
10�1
10�3
Conclusions
- Axion DM - well motivated and testable
- but underrepresented (gets better)
- key targets not covered
- plenty of new ideas uncovered here
- Cavity experiments on the run
- micro-eV range by ADMX, ADMX-HF
- lower masses, IAXO?
- higher masses, new ideas!
- Dish antenna
- a little short for axions
- broadband/miniclusters!
- boost with dielectric layers!
- good for ALPs, hidden photons!
Getting better
- New IBS (Institute of Basic Science)
Center for Axion and Precision Physics (CAPP)
KAIST campus, Daejeon/Korea
- + in US
- Yale developing ADMX-HF
- CASPER
- Europe getting involved
- CASPER, Budker@Mainz
- DESY, CERN, Unizar
- International AXion Observatory
main goal:
solar axions
but also DM