磁気リコネクションの 二流体MHDシミュレーション

磁気リコネクションの
二流体 MHD シミュレーション
物理学会 2004 年秋期大会
東大新領域, 核融合研
沼田 龍介, 吉田 善章, 林 隆也
物理学会 13aXB-9 2004/ 9/13 – p.1/10
Introduction
Processes at microscopic scales (associated with particle motion) plays an
important role in obseved macroscopic dynamics.
Magnetic reconnection is a good example.
No known microprocess that causes dissipation can account for observed fast
reconnection rate.
In the Hall-magnetohydrodynamics (Hall-MHD), two disparate interacting scale
structures will be self-organized.
Mesoscopic model (structure of dissipation region)
✁
✁
✁
Importance of the Hall term is pointed out by many researchers.
Birn et al., JGR (2001)
Ion kinetic (inertia) effects become important at a small scale of the ion skin depth.
Chaos-induced resistivity
物理学会 13aXB-9 2004/ 9/13 – p.2/10
Chaos-Induced Resistivity
Chaotic motion of ions in an inhomogeneous magnetic field with magnetic nulls
produces strong dissipation.
(R. Numata & Z. Yoshida, Phys. Rev. Lett. 88, 045003 (2002))
field line
orbit
E
chaotic orbit
✟
.
i ci eff
✞
☎
✆
✁
Effective resistivity is given by eff
✄
✂
✝
✝
Effective resistivity is localized in the chaos region (size of the chaos region is i )
Outside the chaos region, particles describe regular motion.
物理学会 13aXB-9 2004/ 9/13 – p.3/10
Scale Hierarchy
chaos region
(∼δi)
dissipation region
mesoscopic
macroscopic
microscopic
: chaos region
物理学会 13aXB-9 2004/ 9/13 – p.4/10
✆
✘
✦
i
system size .
✁
✟
★ ✝
✩
✧
✟
✝
✂
✚ ✒
,
✁
✓ ✒
✥
✁
✚ ✒
✤
✓ ✒
✔
✕
✓ ✒
✔
✠
✁
✢
✞✢
✆
✢
✏✢
✍✆
✌
✌
✢
✞✢
✎✍✆
✌
✝
✝
✝
✑
✑
✣
✄
☎
☎
✁
✁
✆
☛✜
✞
✆
✆
☛ ✟
✞
✝
☛ ✁
✚ ✒
✛
✁
✌
✏
✍✆
✍
✏
✍✆
✠ ✏
☎
☎
✆
✖
✞
✟
✝
✘
✙
✗
✑
✄
☎
✆
✖
✍✆
✏
✕
✓ ✒
✔
✠
✁
✌
✌
✞
✆
✆
✞
✆
✝
✟
✟
✝
✝
✑
✑
✄
☎
☎
✁
✆
✝
✟
✏
✏
✍ ✟
✎✍✆
✌
☞☛✆
✞
✞
✁ ✝
✆
✞
✟
✁ ✝
✄
✁
✁ ✝
✆
✞
✠✡✟
☎
✆
✁ ✂
Simulation Model
(1)
(2)
(3)
(4)
(5)
: the Reynolds number and the Magnetic Reynolds number.
describes an inhomogeneity of the resistivity.
物理学会 13aXB-9 2004/ 9/13 – p.5/10
Simulation Model
b
b.
✆
☎
✞
and
✆ ☎
✝
✄✂✆
✁
✞
drift inflow:
✆
✍✖
Upstream boundary
Uniform and constant
✏
Boundary Condition
✟
☛
☎ ☛
☛✝
✟
☞✢
☎✠
✠ ✢
✟
✧
✟
☎
✟
✠ ✝
☎
✟
✠ ✝
✡
Downstream boundary
Open boundary condition is imposed by considering the filter region, outside the
simulation domain, where a friction term
initial ( initial is the initial
value,
b is the friction factor) damps outgoing waves.
✏✎✍
☎
✒
✟
✝
✟
✑
(6)
✓
☎
✆
✂ ✝
✆ ☎
✌
✂
Initial Condition [ Harris Sheet Equilibrium ]
✟
✝
✁✌
✖
✓
✘
☎
✆
✁
✔✕
✒✗
✟
✂ ✝
✁
✝
✂
d
(7)
✙✟
✂ ✝
☎
✆
✁
✟
✂ ✝
☛
d
is the temperature, d is the width of the current sheet.
✓
☎
✙
where
(8)
物理学会 13aXB-9 2004/ 9/13 – p.6/10
Simulation Model
✟
✢
✟
✁
✁
✁
✠ ✕
✆
✠
✠ ✑
✆
✟
✝
is
✁
✁
✁
✆
✠
✠ ✑
c
✆
✝
☎
☎
✢
✟
✏
★ ✝
✢
✟
★
where is a constant (amplitude of the chaos-induced resistivity),
the position of magnetic null points,
☎
✝
✘
✝
☎
(9)
☎★
★ ✢
✄
✆
✂
✁
✟
✁
✌
✑
✟
★ ✝
✩
✝
✝
✑
Inhomogeneity of Resistivity is given by the following equation,
(10)
物理学会 13aXB-9 2004/ 9/13 – p.7/10
Global Structures
MHD
Hall-MHD
物理学会 13aXB-9 2004/ 9/13 – p.8/10
Electric Field (Reconnection Rate)
(b). Spatial scructure
(a). Time evolution
0.005
0
Ey
-0.005
-0.01
-0.015
Chaos Resistivity
Hall MHD
MHD
-0.02
-0.025
0
10
20
30
40
time [τA]
50
60
0.005
0
-0.005
-0.01
-0.015
-0.02
-0.025
-0.03
-0.035
-0.04
-0.045
-0.05
-2
70
-1.5
-1
-0.5
0
x
0.5
1
1.5
2
Electric Field
VxB term
Hall term
Resistivity
物理学会 13aXB-9 2004/ 9/13 – p.9/10
Summary
We have studied the magnetic reconnection process
by means of the Hall-MHD simulation including the
inhomogeneous chaos-induced resisitivity.
We have observed that the magnetic reconnection rate
is strongly enhanced by the inhomogeneous resistivity.
However, how the inhomogeneous resistivity works is
still unclear. (Hall term is dominant).
Further studies on parameter dependence and
reconnection scaling.
3 dimensional structure
物理学会 13aXB-9 2004/ 9/13 – p.10/10