EE290T: Advanced Reconstruction Methods for Magnetic Resonance Imaging Martin Uecker Introduction Topics: I Image Reconstruction as Inverse Problem I Parallel Imaging I Non-Cartestian MRI I Subspace Methods I Model-based Reconstruction I Compressed Sensing Tentative Syllabus I I I I I I I I I I I I I I 01: Jan 27 Introduction 02: Feb 03 Parallel Imaging as Inverse Problem 03: Feb 10 Iterative Reconstruction Algorithms –: Feb 17 (holiday) 04: Feb 24 Non-Cartesian MRI 05: Mar 03 Nonlinear Inverse Reconstruction 06: Mar 10 Reconstruction in k-space 07: Mar 17 Reconstruction in k-space –: Mar 24 (spring recess) 08: Mar 31 Subspace methods 09: Apr 07 Model-based Reconstruction 10: Apr 14 Compressed Sensing 11: Apr 21 Compressed Sensing 12: Apr 28 TBA Tentative Syllabus I I I I I I I I I I I I I I 01: Jan 27 Introduction 02: Feb 03 Parallel Imaging as Inverse Problem 03: Feb 10 Iterative Reconstruction Algorithms –: Feb 17 (holiday) 04: Feb 24 Non-Cartesian MRI 05: Mar 03 Nonlinear Inverse Reconstruction 06: Mar 10 Reconstruction in k-space 07: Mar 17 Reconstruction in k-space –: Mar 24 (spring recess) 08: Mar 31 Subspace methods 09: Apr 07 Model-based Reconstruction 10: Apr 14 Compressed Sensing 11: Apr 21 Compressed Sensing 12: Apr 28 TBA Today I Review of last lecture I Noise Propagation I Iterative Reconstruction Algorithms I Software Phased Array Signal is Fourier transform of magnetization image m weighted by coil sensitivities cj : Z ~ sj (t) = d~x ρ(~x )cj (~x )e −i2πk(t)~x Images of a human brain from an eight channel array: Channel Combination RSS MVUE MMSE Parallel MRI Goal: Reduction of measurement time I Subsampling of k-space I Simultaneous acquisition with multiple receive coils I I Coil sensitivities provide spatial information Compensation for missing k-space data 1. DK Sodickson, WJ Manning. Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays. Magn Reson Med; 38:591–603 (1997) 2. KP Pruessmann, M Weiger, MB Scheidegger, P Boesiger. SENSE: Sensitivity encoding for fast MRI. Magn Reson Med; 42:952–962 (1999) 3. MA Griswold, PM Jakob, RM Heidemann, M Nittka, V Jellus, J Wang, B Kiefer, A Haase. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med; 47:1202–10 (2002) Parallel MRI: Undersampling Undersampling Aliasing kphase kread kpartition kphase Parallel Imaging as Inverse Problem Model: Signal from multiple coils (image ρ, sensitivities cj ): Z ~ sj (t) = d~x ρ(~x )cj (~x )e −i2π~x ·k(t) + nj (t) Ω Assumptions: I Image is square-integrable function ρ ∈ L2 (Ω, C) I Additive multi-variate Gaussian white noise n Problem: Find best approximate/regularized solution in L2 (Ω, C). Ω Discretization of Linear Inverse Problems Continuous integral operator F : f 7→ g with kernel K : b Z g (t) = ds K (t, s)f (s) a Discrete system of linear equations: y = Ax Considerations: I Discretization error I Efficient computation I Implicit regularization operator unknown data continuous F f g discrete A x y Discretization for Parallel Imaging Discrete Fourier basis: f (x, y ) ≈ N N X X ˆal,k e i2π kx FOVy ly + FOV y l=−N k=−N I I I Efficient computation (FFT) Approximates R(F H ) extremely well (for smooth cj ) y x Voxels: Dirichlet kernel DN ( FOV )DN ( FOV ) x y FOVy Ω FOVx Discretization SENSE: Discretization Weak voxel condition: Images from discretized subspace should be recovered exactly (from noiseless data). Common choice: ¯ f (x, y ) ≈ X r ,s δ(x − r FOVy FOVx )δ(y − s ) Nx Ny I Efficient computation using FFT algorithm I Periodic sampling (⇒ decoupling) Problem: Periodically extended k-space. ⇒ Error at the k-space boundary! SENSE: Decoupling periodic sampling System of decoupled equations: m1 (x, y ) c1 (x, y1 ) = ··· ··· mn (x, y ) cn (x, y1 ) y1 c1 ρ c2 ρ y2 c1 ρ c2 ρ y m1 m2 x x spin density ρ, sensitivities ci c1 (x, y2 ) · ··· cn (x, y2 ) ρ(x, y1 ) ρ(x, y2 ) ! Discretization: Summary I Continuous reconstruction (from finite data) is ill-posed! I Discretization error I Implicit regularization (discretized problem might be well-conditioned) Attention: Be carefull when simulating data! Same discretization for simulation and reconstruction ⇒ misleading results (inverse crime) Today I Review of last lecture I Noise Propagation I Iterative Reconstruction Algorithms I Software Complex Gaussian Distribution Random variable Z = X + iY Proper complex Gaussian: Z ∼ CN (µ, σ 2 ) p(Z ) = 2 1 − |Z −µ| e σ2 σπ I mean: µ = E [Z ] variance: σ 2 = E [(Z − µ)(Z − µ)? ] proper: pseudo-variance E [(Z − µ)(Z − µ)] = 0 R Multi-Variate Complex Gaussian Distribution Random vector Z = X + iY Multi-variate proper complex Gaussian distribution: Z ∼ CN (µ, Σ) mean µ = E [Z ] covariance Σ = Cov [Z , Z ] = E [(Z − µ)(Z − µ)H ] pseudo-covariance E [(Z − µ)(Z − µ)T ] = 0 Multi-Variate Complex Gaussian Distribution Linear reconstruction: Zˆ = FZ Zˆ ∼ CN (F µ, F ΣF H ) Full covariance matrix for all pixels: F ΣF H ⇒ Not (always) practical (2D size ∝ 109 , 3D size: ∝ 1014 ) Geometry Factor Quantity of interest: noise variance of pixel values: q σ(xi ) = (F ΣF H )ii Spatially dependent noise: √ σund. (x) = g (x) Rσfull (x) Acceleration: R, Geometry factor: g Practical estimation: Monte-Carlo method X σ ˆ 2 (x) = N −1 |Fnj |2 j Gaussian white noise nj . Noise Amplification in Parallel Imaging R=1 R=3 Local noise amplification dependent on: I Sampling pattern I Coil sensitivities Pruessmann et al. Magn Reson Med. 42:952–962 (1999) g-factor map Parallel MRI: Regularization I General problem: bad condition I Noise amplification during image reconstruction I L2 regularization (Tikhonov): argminx kAx − y k22 + αkxk22 I ⇔ (AH A + αI )x = AH y Influence of the regularization parameter α: small medium large Noise vs. Bias Parallel MRI: Nonlinear Regularization I Good noise suppression I Edge-preserving ⇒ Sparsity, nonlinear regularization argminx kAx − y k22 + αR(x) Regularization: R(x) = TV (x), R(x) = kWxk1 , . . . 1. JV Velikina. VAMPIRE: variation minimizing parallel imaging reconstruction. Proc. 13th ISMRM; 2424 (2005) 2. G Landi, EL Piccolomini. A total variation regularization strategy in dynamic MRI, Optimization Methods and Software; 20:545–558 (2005) 2. B Liu, L Ying, M Steckner, J Xie, J Sheng. Regularized SENSE reconstruction using iteratively refined total variation method. ISBI; 121-123 (2007) 3. A Raj, G Singh, R Zabih, B Kressler, Y Wang, N Schuff, M Weiner. Bayesian parallel imaging with edge-preserving priors. Magn Reson Med; 57:8–21 (2007) 4. M Uecker, KT Block, J Frahm. Nonlinear Inversion with L1-Wavelet Regularization - Application to Autocalibrated Parallel Imaging. ISMRM 1479 (2008) 5. . . . Parallel MRI: Nonlinear Regularization I L2 , L1 -wavelet and TV-regularization I 3D-FLASH, 12-channel head coil I 2D-reduction factor of 12 (phantom) and 6 (brain) Correlated Noise - Whitening Cholesky decomposition: Σ = LLH Lower triangular matrix L: Transform with W = L−1 to uncorrelated and equalized noise: CN (0, Σ) ⇒ CN (0, W ΣW H ) = CN (0, I ) Reconstruction problem: Ax = y equations: AH W H WAx = AH W H Wy ⇒ ⇔ WAx = Wy Normal argminx kWAx − Wy k2 In MRI: Noise correlations between receive channels. whitening ⇒ uncorrelated virtual channels: Wy Today I Review of last lecture I Noise Propagation I Iterative Reconstruction Algorithms I Software Parallel MRI: Iterative Algorithms Signal equation: Z ~ si (~k) = d~x ρ(~x ) ci (~x )e −i2π~x ·k | {z } V encoding functions Discretization: A = Pk FC A has size 2562 × (8 × 2562 ) ⇒ Iterative methods built from matrix-vector products Ax, AH y sensitivities Landweber Iteration Gradient descent: 1 φ(x) = kAx − y k22 2 ∇φ(x) = AH (Ax − y ) Iteration rule: xn+1 = xn − µAH (Axn − y ) with µkAH Ak ≤ 1 = (I − µAH A)xn − AH y Explicit formula for x0 = 0: xn = n−1 X (I − µAH A)j µAH y j=0 Landweber Iteration 1 iteration 1 iteration 2 iteration 10 iteration 50 0.8 0.6 0.4 0.2 0 0 0.2 0.4 0.6 0.8 1 reconstruction of right singular-vectors (µ = 0.9) xn = n−1 X (I − µAH A)j µAH Ax = j=0 geometric series: X n 1 − (1 − µσl2 ) Vl VlH x l Pn−1 j=0 xj = 1−x n 1−x SVD: A = P j σj Uj VjH Projection Onto Convex Sets (POCS) Iterative projection onto convex sets: yn+1 = PB PA yn A B Problems: slow, not stable, A ∩ B = ∅ Projection Onto Convex Sets (POCS) Iterative projection onto convex sets: yn+1 = PB PA yn A B Problems: slow, not stable, A ∩ B = ∅ POCSENSE Iteration: yˆn+1 = PC Py yˆn (multi-coil k-space yˆ ) Projection onto sensitivities: PC = FCC H F −1 (normalized sensitivities) Projection onto data y : Py yˆ = My + (1 − M)ˆ y AA Samsonov, EG Kholmovski, DL Parker, and CR Johnson. POCSENSE: POCS-based reconstruction for sensitivity encoded magnetic resonance imaging. Magn Reson Med, 52:1397–1406, 2004. POCSENSE Fully-sampled data should be consistent with sensitivities: PC yfull = yfull ⇒ F CC H − I F −1 yfull = 0 But is not: F −1 yfull C Note: Can be used to validate coil sensitivities. CC H − I F −1 yfull POCS and Landweber For parallel MRI: POCS corresponds to Landweber for µ = 1 and normalized sensitivities. yn+1 = PC Py yn = FC C H F −1 ((I − Pk )yn + y0 ) | {z } xn Rewrite: xn+1 = C H F −1 ((I − Pk )FCxn + y0 ) H H = C Cxn − C F −1 with yn = FCxn Pk FCxn + C F −1 Pk y0 = xn − AH (Axn − y0 ) H with C H C = I , with Pk y0 = y0 A = Pk FC Krylov Subspace Methods Krylov subspace: Kn = spani=0···n {T n b} ⇒ Repeated application of T . Landweber, Arnoldi, Lanczos, Conjugate gradients, ... Conjugate Gradients T symmetric (or Hermitian) Initialization: r0 = b − Tx0 d0 = r0 Iteration: qi ⇐ Tdi α= |ri |2 R riH qi xi+1 ⇐ xi + αdi ri+1 ⇐ ri − αqi |ri+1 |2 |ri |2 ⇐ ri+1 + βdi β= di+1 Conjugate Gradients T symmetric (or Hermitian) Initialization: r0 = b − Tx0 d0 = r0 Iteration: qi ⇐ Tdi xi+1 ⇐ xi + αdi ri+1 ⇐ ri − αqi di+1 ⇐ ri+1 + βdi Conjugate Gradients T symmetric (or Hermitian) Initialization: r0 = b − Tx0 d0 = r0 Iteration: qi ⇐ Tdi α= |ri |2 R riH qi xi+1 ⇐ xi + αdi ri+1 ⇐ ri − αqi |ri+1 |2 |ri |2 ⇐ ri+1 + βdi β= di+1 Conjugate Gradients T symmetric or Hermitian Directions are conjugate basis: piH Tpj = δij (Wikipedia) Coefficients can be directly computed: X X b = Tx = T α i pi = αi Tpi i pjH b = X αi pjH Tpi i ⇒ αj = pjH b pjH Tpj i = αj pjH Tpj Conjugate Gradients on Normal Equations Normal equations: AH Ax = AH y ⇔ x = argminx kAx − y k22 Tikhonov: AH A + αI x = AH y ⇔ x = argminx kAx − y k22 + αkxk22 CGNE: Tx = b with: T = AH A b = AH y Implementation repeat FFT P IFFT FFT P IFFT sum channels point-wise mult. with conjugate sensitivities inverse FFT data flow sampling mask or projection onto data multi-dimensional FFT point-wise multiplication with sensitivities distribute image Conjugate Gradient Algorithm vs Landweber conjugate gradients Landweber 1. 1.414 1.732 2. Conjugate Gradient Algorithm vs Landweber conjugate gradients Landweber 1. 1.414 1.732 2. Conjugate Gradient Algorithm vs Landweber conjugate gradients Landweber 1. 1.414 1.732 2. Conjugate Gradient Algorithm vs Landweber conjugate gradients Landweber 1. 1.414 1.732 2. Conjugate Gradient Algorithm vs Landweber conjugate gradients Landweber 1. 1.414 1.732 2. Conjugate Gradient Algorithm vs Landweber conjugate gradients Landweber 1. 1.414 1.732 2. Conjugate Gradient Algorithm vs Landweber conjugate gradients Landweber 1. 1.414 1.732 2. Conjugate Gradient Algorithm vs Landweber conjugate gradients Landweber 1. 1.414 1.732 0 2. Conjugate Gradient Algorithm vs Landweber conjugate gradients Landweber 1. 1.414 1.732 0 2. 1 Conjugate Gradient Algorithm vs Landweber conjugate gradients Landweber 2 1. 1.414 1.732 0 2. 1 Conjugate Gradient Algorithm vs Landweber Size: 41400 × 41400 (complex) 1 Landweber CG 0.1 0.01 0.001 0.0001 0 20 40 60 80 100 Nonlinear Methods I Non-linear Conjugate Gradient I Landweber xn+1 = xn + µDF H (y − Fx) I Iteratively Regularized Gauss-Newton Method I ... Project 1: Iterative SENSE Project: Implement and study Cartesian iterative SENSE I Tools: Matlab, reconstruction toolbox, python, ... I Deadline: Feb 24 I Hand in: Working code and plots/results with description. I See website for data and instructions. Project 1: Iterative SENSE Step 1: Implement Model A = PFS AH = S H F −1 P H Hints: I Use unitary and centered (fftshift) FFT kFxk2 = kxk2 I Implement undersampling as a mask, store data with zero Check hx, Ay i = AH x, y for random vectors x, y I Project 1: Iterative SENSE Step 2: Implement Reconstruction Landweber (gradient descent)1 xn+1 = xn + αAH (y − Axn ) Conjugate gradient algorithm2 Step 3: Experiments I Noise, errors, and convergence speed I Different sampling I Regularization 1. L Landweber. An iteration formula for Fredholm integral equations of the first kind. Amer J Math; 73:615–624 (1951) 2. MR Hestenes and E Stiefel. Methods of conjugate gradients for solving linear systems. J. Ref. N.B.S. 49:409–436 (1952) Today I Review of last lecture I Noise Propagation I Iterative Reconstruction Algorithms I Software Software Toolbox I Rapid prototyping (similar to Matlab, octave, ...) I Reproducible research (i.e. scripts to reproduce experiments) I Robustness and clinically feasible runtime (C/C++, OpenMP, GPU programming) Programming library I Consistent API based on multi-dimensional arrays I FFT and wavelet transform I Generic iterative algorithms (conjugate gradients, IST, IRGNM, . . . ) I Transparent GPU acceleration of most functions Command-line tools I Simple file format I Interoperability with Matlab I Basic operations: fft, crop, resize, slice, . . . I Sensitivity calibration and image reconstruction Software I Available for Linux and Mac OS X (64 bit) http://www.eecs.berkeley.edu/~uecker/toolbox.html I Requirements: FFTW, GSL, LAPACK (CUDA, ACML) Ubuntu: sudo apt-get install libfftw3-dev sudo apt-get install libgsl0-dev sudo apt-get install liblapack-dev Mac OS X: sudo port install fftw-3-single sudo port install gsl sudo port install gcc47 Data Files Data files store multi-dimensional arrays. example.hdr example.cfl ⇐ Text header ⇐ Data: complex single-precision floats Text header: # Dimensions 1 230 180 8 2 1 1 1 1 1 1 1 1 1 1 1 Matlab functions: data = readcfl(’example’); writecfl(’example’, data) C Functions (using memory-mapped IO) Rapid Prototyping Data processing using command line tools: # resize 0 320 tmp in # fft -i 7 out tmp Load result into Matlab/Octave: i data = squeeze(readcfl(’out’)); i imshow3(abs(data), []); C Programming Example #i n c l u d e <comple x . h> #i n c l u d e ”num/ f f t . h” #i n c l u d e ” m i s c /mmio . h” i n t main ( ) { i n t N = 16; l o n g dims [ N ] ; c o mplex f l o a t ∗ i n = l o a d c f l ( ” i n ” , N, dims ) ; c o mplex f l o a t ∗ o u t = c r e a t e c f l ( ” o u t ” , N, dims ) ; f f t c (N, dims , 1 + 2 + 4 , out , i n ) ; } Reconstruction Algorithms I Iterative SENSE1 I Nonlinear inversion2 I ESPIRiT calibration and reconstruction3 I Regularization: L2 and L1-wavelet 1. Pruessmann KP et al. Advances in sensitivity encoding with arbitrary k-space trajectories. MRM 46:638-651 (2001) 2. Uecker M et al. Image Reconstruction by Regularized Nonlinear Inversion - Joint Estimation of Coil Sensitivities and Image Content. MRM 60:674-682 (2008) 3. Uecker M, Lai P, et al. ESPIRiT - An Eigenvalue Approach to Autocalibrating Parallel MRI: Where SENSE meets GRAPPA. MRM EPub (2013)
© Copyright 2024 ExpyDoc