Supplement of Will the role of intercontinental transport change in a

Supplement of Atmos. Chem. Phys., 14, 9379–9402, 2014
http://www.atmos-chem-phys.net/14/9379/2014/
doi:10.5194/acp-14-9379-2014-supplement
© Author(s) 2014. CC Attribution 3.0 License.
Supplement of
Will the role of intercontinental transport change in a changing climate?
T. Glotfelty et al.
Correspondence to: Y. Zhang ([email protected])
OIN
OC
BC
SO2 and
SO42-
BB
AT
BB
AT
BB
1.19
0.58
1.12
0.52
1.19
1.16
1.05
0.62
0.03
0.26
BB
AG
AT
BB
AT
NH3
CRES
NOx,
and NO3
N2O
CH4
CO
XYL
AACD
TOL
OLE and
IOLE
ETH
HC
KET
ETOH
and
MEOH
ETHA
FORM
1.19
0.66
0.31
1.19
0.66
1.44
0.24
0.66
0.96
0.01
0.39
0.48
0.47
0.24
0.52
1.19
0.66
1.05
0.02
0.66
0.37
0.94
1.19
1.03
1.19
0.97
0.03
0.54
0.03
0.78
0.94
0.04
0.97
1.07
BB
BF
AT
BB
BF
AT
BB
BF
AT
BB
BF
AT
Total
BB
AT
BB
BF
AT
BB
BF
AT
Total
BB
AT
BB
AT
BB
AT
BB
AT
Total
BB
AT
Total
ALD2
Canada
Source
Species
1.05
0.49
0.96
0.67
1.05
1.01
1.42
0.89
0.80
0.25
1.05
0.94
0.26
1.05
0.94
1.68
0.47
0.94
0.97
0.27
0.55
0.47
0.47
0.47
0.67
1.05
0.94
0.86
0.31
0.94
0.35
0.97
1.05
1.03
1.05
0.92
0.72
0.44
0.78
0.39
0.97
0.98
0.89
2.07
USA
0.81
1.70
0.80
0.44
0.81
0.91
1.91
1.34
0.93
1.81
Central
America
0.81
1.32
0.56
0.81
1.32
3.68
0.33
1.32
2.38
0.19
0.78
1.07
1.07
0.33
0.44
0.81
1.32
3.22
0.26
1.32
0.65
2.23
0.81
2.61
0.81
2.56
0.50
0.94
0.30
1.82
2.23
1.30
3.36
3.07
1.37
1.01
1.40
0.35
1.37
1.35
1.40
1.23
3.40
7.46
South
America
1.37
1.16
0.55
1.37
1.16
3.40
1.05
1.16
2.20
0.74
0.69
3.22
3.13
1.05
0.35
1.37
1.16
2.96
1.00
1.16
0.67
2.02
1.37
2.32
1.37
2.25
1.83
1.05
2.13
3.87
2.02
1.50
3.62
4.07
Table S1. Emissions Growth Factors for the Year 2050 1.72
2.99
0.98
1.58
1.72
0.76
2.27
0.16
1.17
7.26
North
Africa
1.72
0.30
4.03
1.72
0.30
7.45
0.44
0.30
4.68
0.31
0.18
1.38
1.37
0.44
1.58
1.72
0.30
5.15
0.38
0.30
4.12
4.10
1.72
4.27
1.72
4.49
0.71
3.82
0.75
1.97
4.10
1.23
9.17
5.07
0.78
0.93
0.79
0.26
0.78
0.82
2.99
1.67
1.15
9.09
West
Africa
0.78
1.45
3.58
0.78
1.45
12.65
0.42
1.45
7.97
0.26
0.86
3.21
3.07
0.42
0.26
0.78
1.45
12.38
0.36
1.45
3.82
3.71
0.78
5.91
0.78
5.84
0.62
1.82
0.72
4.86
3.71
0.47
6.72
6.07
1.30
1.97
1.27
0.90
1.30
1.28
2.21
1.85
1.50
14.81
East
Africa
1.30
1.64
7.97
1.30
1.65
20.42
0.55
1.65
10.71
0.32
0.97
9.34
3.20
0.55
0.90
1.30
1.65
14.87
0.44
1.65
8.02
3.27
1.30
5.02
1.30
5.27
0.79
2.19
0.80
1.91
3.27
0.67
8.40
7.07
2 0.40
1.42
0.40
0.40
0.40
0.36
2.80
1.20
0.42
6.87
South
Africa
0.40
1.06
2.34
0.40
1.06
6.41
0.18
1.06
3.64
0.10
0.63
5.88
4.20
0.18
0.40
0.40
1.06
4.92
0.14
1.06
2.45
2.29
0.40
2.75
0.40
2.91
0.22
1.72
0.22
9.15
2.29
0.18
5.16
8.07
0.86
0.57
0.72
0.86
0.86
0.79
1.20
0.61
0.64
0.37
OECP
Europe
0.86
0.63
0.36
0.86
0.63
1.55
0.37
0.63
1.01
0.21
0.37
0.74
0.74
0.37
0.86
0.86
0.63
1.01
0.24
0.63
0.41
1.00
0.86
1.09
0.86
1.03
0.58
0.53
0.67
0.84
1.00
0.75
1.02
9.07
0.74
1.06
0.75
0.79
0.74
0.58
1.23
0.60
0.85
0.23
Eastern
Europe
0.74
0.74
0.43
0.74
0.74
4.79
0.35
0.74
3.54
0.26
0.44
0.89
0.88
0.35
0.79
0.74
0.74
4.40
0.31
0.74
0.47
3.46
0.74
4.11
0.74
4.10
0.57
0.57
0.66
0.42
3.46
0.82
2.58
10.07
1.04
1.63
1.04
2.28
1.04
1.00
1.60
0.37
0.08
0.37
Former
USSR
1.04
0.93
0.90
1.04
0.93
5.17
0.24
0.93
3.76
0.03
0.55
1.37
1.36
0.24
2.28
1.04
0.93
5.52
0.04
0.93
0.76
3.53
1.04
4.11
1.04
4.13
0.07
1.10
0.07
2.18
3.53
0.10
2.11
11.07
0.73
1.69
0.51
0.40
0.73
0.48
3.21
0.30
1.15
1.09
Middle
East
0.73
0.26
0.85
0.73
0.26
2.48
0.36
0.26
1.54
0.26
0.15
2.31
2.31
0.36
0.40
0.73
0.26
1.39
0.33
0.26
0.90
1.49
0.73
1.58
0.73
1.38
0.59
1.04
0.54
6.99
1.49
1.02
3.84
12.07
1.72
1.88
1.42
0.45
1.72
1.78
1.30
1.04
0.99
3.93
South
Asia
1.72
0.93
3.04
1.72
0.93
13.62
0.33
0.93
8.88
0.18
0.55
2.86
1.99
0.33
0.45
1.72
0.93
17.94
0.22
0.93
3.02
3.91
1.72
6.57
1.72
6.72
0.48
1.38
0.39
1.75
3.91
0.89
8.63
13.07
1.00
0.76
0.93
0.52
1.00
0.96
0.76
0.64
0.06
0.89
East
Asia
1.00
0.68
0.77
1.00
0.68
7.26
0.11
0.68
4.74
0.02
0.40
2.86
2.49
0.11
0.52
1.00
0.68
9.55
0.02
0.68
0.82
3.32
1.00
4.75
1.00
4.73
0.03
0.81
0.04
1.73
3.32
0.04
2.94
14.07
0.96
1.10
0.96
0.35
0.96
1.01
2.14
0.96
2.36
3.59
Southeast
Asia
0.96
0.90
1.10
0.96
0.90
5.88
0.68
0.90
4.21
0.49
0.53
1.40
1.29
0.68
0.35
0.96
0.90
6.87
0.64
0.90
1.22
3.11
0.96
4.22
0.96
4.16
1.26
1.11
1.27
1.86
3.11
1.69
4.80
15.07
1.45
0.85
1.51
0.95
1.45
1.54
0.86
0.74
1.84
0.43
1.45
0.68
0.29
1.45
0.68
1.30
0.64
0.68
0.88
0.39
0.40
0.39
0.39
0.64
0.95
1.45
0.68
0.97
0.52
0.68
0.32
0.87
1.45
0.96
1.45
0.93
0.96
0.46
1.10
1.74
0.87
0.76
1.03
16.07
Oceania
2.13
0.26
1.63
0.33
2.13
1.85
1.96
0.90
6.81
0.26
2.13
0.56
0.49
2.13
0.56
1.61
1.08
0.56
1.24
0.87
0.33
0.67
0.67
1.08
0.33
2.13
0.56
1.22
1.02
0.56
0.53
1.23
2.13
1.29
2.13
1.25
2.56
0.69
3.58
0.44
1.23
2.88
1.01
17.07
Japan
for PAR emissions is listed in Table 2 of Zhang et al., (2012).
3 also comprised of some other RADM2 species including HC3, HC5, and HC8 which are referred to as HC in the table and ketone (KET). The equation
As a result par emissions are calculated based on several species including those that are mapped to AACD, OLE, IOLE, and ALD2. However, PAR is
version 2 (RADM2) format and later mapped to the carbon bond 2005 with global extension (CB05GE) mechanism species as shown in the above table.
(AT), or total non-source specific emissions (Total). * The GU-WRF/Chem emissions are generated based on the Regional Acid Deposition Model
regions shown and based on the emissions sources. These sources include biomass burning (BB), bio-fuels (BF), agriculture (AG), anthropogenic sources
Growth factors applied to base year emissions to generate 2050 projected emissions. The emissions growth factors vary depending on the 17 world
Table S1.
Table Description
GU--WRF/Chem
m 2001 (CCS
SM)
GU-WR
RF/Chem AO
OC (CCSM)
Figure S11. Average spring
s
(MAM
M) 2-m temp
perature, 2-m
m water vapoor, precipitattion rate, andd planetary bboundary
layer heightt fields from
m GU-WRF/C
Chem simulaations of thee year 2001 ((left) and aveeraged curreent period
consisting of
o 2001 and 2010 (AOC)) (right). GU
U-WRF simuulations are iinitialized w
with the CCSM
M3 data.
4 Sate
ellite/Reanalysis CCCSM3 Figuure S2. The statistically
s
significant
s
diifferences in
n T2, Q2, SL
LP, WSP10, WSP5500, P
PR, GSW, O
OLR, and
GLW
W between MAM
M
AOF and
a AOC thaat are greaterr than the vaariability in tthe current cclimate from
m reanalysis
or saatellite data (left)
(
and greeater than the variability
y in the curreent and futurre climate froom CCSM3 (right). The
GLW
W plot in thee bottom row
w of the CCS
SM3 column was not gennerated sincee the CCSM3 GLW dataa was not
readiily availablee.
5 6 Figure S
S3. The time evo
olution of NO, volatile
v
organic compound, blacck carbon, organ
nic carbon, CO,, SO2, and NH3 emissions in thee GU-WRF/Cheem
A1B, RC
CP6, and RCP8.5 emission scen
narios on a glob
bal scale.
7 Figure S
S4. The time evo
olution of NO, volatile
v
organic compound, blacck carbon, organ
nic carbon, CO,, SO2, and NH3 emissions in thee GU-WRF/Cheem
A1B, RC
CP6, and RCP8.5 emission scen
narios in East Asia.
A
doi:10.1029/2012JD017966
8 the global-through-urban weather research and forecasting model with chemistry (GU-WRF/Chem), J. Geophys. Res., 117, D20206,
Zhang, Y., P. Karamchandani, T. Glotfelty, D. G. Streets, G. Grell, A. Nenes, F. Yu, and R. Bennartz (2012), Development and initial application of
Reference