Science in synthesis gas production

K int
r
é æ 2gW ö
æ 2gW öù
êexpç r * RT ÷ - expç rRT ÷ú
ø
è
øû
ë è
Science in synthesis gas production
Research I Technology I Catalysts
Jens Sehested
CORE and Surface Phenomena and Catalysis lecture
Gent University, 9 May 2014, Gent, Belgium
Confidential
Presentation outline
¡ Synthesis gas production overview
– The reactions
– The technologies
¡ The heart in synthesis gas production: The steam
reforming reaction over nickel
– Sintering (stability of Ni particles)
– Carbon formation and limits for whisker carbon formation
– Reaction over nickel and other transition metals
¡ Can we cheat equilibrium in methanol synthesis?
Confidential
Haldor Topsøe A/S in brief
¡ Established in 1940 by Dr. Haldor
Topsøe. 100% family owned
¡ ~2,800 employees in 11 countries
across five continents.
¡ HQ in Lyngby, Denmark. Production
in Denmark, USA and soon in
China
¡ Three key operating business
areas:
– Chemicals
– Environmental
– Refinery
Haldor Topsøe 1913-2013
¡ Revenue ~ 700 million EUR (2013)
Confidential
Construction at the Pearl GTL project, Qatar, 2010
What is synthesis gas?
¡ Synthesis gas is a mixture of CO/CO2/H2 that is used in a
number of syntheses of wide range of chemicals
¡ Synthesis gas can be made from
– Steam reforming
– Gasification
– Partial oxidation
Confidential
Typical methanol process ~ 2500 MTPD
Oxygen
Steam
Sulphur removal
Steam
Prereformer
Methanol
reactor
Secondary
reformer
Hydrogenator
Steam
Makeup
comp.
Natural
gas
Steam reformer
Condensate
Light ends to fuel
Product
methanol
Water
Raw
methanol
Raw methanol storage
Confidential
Pre-reformer; Primary reformer; Secondary reformer;
ATR
O2 / Air
Process Gas
CH4 + H2O à 3H2 + CO; CH4 + 3/2O2 à CO2 + H2O; CO2 + H2 àCO + H2
Mainly Ni based catalysis; T-range [390 – 1050oC]
Confidential
Steam Reforming and shift reactions
CH4 + H2O
CnHm + n H2O
CO + H2O
CO + 3H2 (-DH0298 = -206 kJ/mol)
n CO + (n+m/2) H2
CO2 + H2
(-DH0298 < 0)
(-DH0298 = 41 kJ/mol)
¡ Steam refoming is strongly endothermic
– i.e. favourable equilibrium at high T, low p
¡ Shift is weakly exothermic
– i.e. favourable equilibrium at low T
Confidential
Steam reforming and methane conversion
CH4 + H2O
CO + 3H2 (-DH0298 = -206 kJ/mol)
Methane conversion, %
100
1 bar abs
80
20 bar abs
60
40
S/C = 5.0
S/C = 2.5
S/C = 1.0
20
0
400
500
600
700
800
900
400
S/C = 5.0
S/C = 2.5
S/C = 1.0
500
600
Reforming equilibrium temperature, °C
Confidential
700
800
900 1000
Tubular steam reforming
Heat
Feed
~500°C
Heat
Heat
Catalyst
Heat
Heat
~900°C
Confidential
Oryx GTL plant – Qatar 34,000 BPD
Prereformer
Natural
gas
Refor
ming
Synthesis
gas
FT
Confidential
Autothermal
reformer
HC Crac- Transport
king
fuel
Adiabatic pre-reforming
Temperatures typically 400-600°C
Feed flexibility – conversion of HHC
Reducing size of down stream reformers
Removes traces of sulphur
470
O2 / Air
460
Natural Gas
and Steam
T e m p e ra tu re , d e g C
¡
¡
¡
¡
Process Gas
450
440
430
420
0
0,2
0,4
0,6
Relative axial distance
Synthesis
Gas
Confidential
0,8
1
Air or Oxygen
Autothermal reforming
Natural gas,
or reformed gas
+ steam
burner
Combustion zone
CH4 + 1½O2
CO + 2H2O
Thermal and catalytic zones
CH4 + H2O
CO + 3H2
CO + H2O
CO2 + H2
Synthesis gas
Confidential
Economy of Scale for Syngas
The choice of technology depends on
scale of operation
H2O/CH4
Log costs
Air
H2O/CH4
O2-plant
O2
Syngas
Air
H2O/CH4
Tubular
Reformer
O2
Log capacity
Syngas
Confidential
The heart in synthesis gas generation is
steam reforming
CnH2n+2 + nH2O
CH4 + H2O
CO + H2O
O2 /
Air
Process
Gas
Ni
Ni
Ni
nCO + (2n + 1) H2
CO + 3H2
CO2 + H2
Ni(111),
0.20nm
Ni(200),
0.18nm
Confidential
From nano to mega
Active phase
Pore structure
0,0000000001m = 1Å 0,000000001m = 1nm
Catalyst from
0,001m = 1mm
Confidential
Reactor
1m
Presentation outline
¡ Synthesis gas production overview
– The reactions
– The technologies
¡ The heart in synthesis gas production: The steam
reforming reaction over nickel
– Sintering (stability of Ni particles)
– Carbon formation and limits for whisker carbon formation
– Reaction over nickel and other transition metals
¡ Can we cheat equilibrium in methanol synthesis?
Confidential
Environmental TEM (ETEM)
S. Helveg
Philips CM300-ST FEG
FEI Titan 80-300 Cs-corr
FEG
FEG
x
Gas handling
gas path:
x = 5.4mm
Sample
QMS
Gas handling
Sample
Aberration
corrector
Detectors
- Tietz F114 CCD
- GIF2000
Detectors
-US1000 & Tridiem 863
4mm
§ 1-20mbar, 10-50Nml/min, 600-900oC
Adv. Catal. 50, 77 (2006)
Confidential
Sintering of metal catalysts
Nickel steam reforming catalysts
1
1:1
2 =30
H2O:HH22=O:H
1:1,
bar g
0.9
0.8
Relative Ni area
0.7
0.6
650 °C
0.5
0.4
0.3
800 °C
0.2
0.1
0
0
100
200
300
400
500
Time (hours)
600
700
800
Ni/MgAl
Confidential
2O4
Sintering in steam reforming
Prereforming
Tubular reforming
400-600°C
500-900°C
High steam partial pressures
2 mbar H2,
500°C, red.
Ni/MgAl2O4
2 mbar H2,
750°C, 5h
Autothermal reforming
2 mbar H2:H2O=1:1
750°C, 5h
Confidential
T. Hansen PhD thesis (2006)
900-1200°C
Particle Migration and Coalescence (PMC)
H2, 600°C
Ni/MgAl2O4
Confidential
Ostwald Ripening (OR)
H2, 700°C
– Atom migration
– Vapour migration
Ni/MgAl2O4
Confidential
Predicting sintering: 30 min
5 nm
¡
¡
¡
Ni/MgAl2O4 reforming catalyst
750oC, H2:H2O = 1:1 @ 3.6mbar
TEM: 300keV, 740 e-/Å2s
¡ Ni/MgAl2O4 reforming catalyst
¡ 750oC, H2:H2O = 1:1 @ 3.6mbar
¡ TEM: 300keV, 740 e-/Å2s
Initial
Ex situ, 30 min
Model, 30 min
K int (750°C ) = 5 ×10 -3 nm 2 s -1
Challa et al. JACS 133, 20672 (2011)
Confidential
Bridging the gap: Catalyst and ETEM data
5 nm
14
12
dNi/dNi,0
10
1/ 3
d Ni æç K 3D OH-dim er t æç PH O ö÷ ö÷
=
+1
3
0.5 ÷
ç
÷
P
d Ni , 0 çè
d Ni , 0
è H ø ø
8
6
4
2
2
174-700 h
28.2 bar H2O
2.8-12 bar H2
700 h, H2O:H2=10, 31 bar
174.3 h, H 2O:H 2=10, 31 bar
2
0
450
700 h, H2O:H2=2.5, 40
bar
500
550
600
650
700
750
800
850
Temperature (°C)
K int (750°C ) = (0.9 - 17 ) ×10 nm s
-3
2 -1
K int (750°C ) = 1.2 ×10 -3 nm 2 s -1
Challa et al. JACS 133, 20672 (2011)
Confidential
Sehested et al. J. Catal. 223, 432 (2004)
Sehested et al. Unpublished
Is it possible to reduce sintering?
Promotor
¡ Alloy with another metal:
Ni
carrier
Ni
Ni
carrier
Huge Ni particles > 200 nm
Ni bimetallic
particles 5 – 50
nm
Ni/Al2O3
Ni/Al2O3 + 11mol% precious metal
After aging at 850°C, 30 bar g and H2O/H2 = 6 during 10 days
Confidential
F.Morales-Cano et al. (2012)
Exposure to Industrial Conditions
Invention
¡ Promoted catalysts tested in an ATR for 6
months
p-Ni/Al2O3
Ni/Al2O3
¡ Ni volatilization and sintering are suppressed in
the presence of precious metal promotor
Catalyst after 6 months ATR operation
Rings retrieved after 6
months
Ni/Al2O3
F.Morales-Cano et al. (2012)
Ni/Al O + precious
metal
2 3
Confidential
Pressure drop over an ATR
¡ Interactions behind the
pressure shell between:
O2
– Flame …
CH4
– Gas phase …
CO2
– Refractory …
CO
H2
– Tiles …
H2O
Al(OH)3
– Catalyst …
– Rubies …
– Pressure drop …
– …
Al2O3
Confidential
ΔP
Pressure drop in industrial ATR - low H2O/CH4 ratio
dP comparison in various ATR runs
160
140
120
Relavtive dP
100
80
60
40
20
dP optimized cat. bed
0
0
2000
4000
6000
8000
10000
Runtime (h)
Confidential
12000
14000
16000
18000
20000
Presentation outline
¡ Synthesis gas production overview
– The reactions
– The technologies
¡ The heart in synthesis gas production: The steam
reforming reaction over nickel
– Sintering (stability of Ni particles)
– Carbon formation and limits for whisker carbon formation
– Reaction over nickel and other transition metals
¡ Can we cheat equilibrium in methanol synthesis?
Confidential
How can we improve the steam ref. section in GTL?
Steam
Gas to liquid (GTL) – heat exchange reforming
Natural gas
Prereforming
Oxygen
Tail Gas from FT
ATR
HTER-s
• Reduces size and duty of WHB
• Reduces size and duty of fired heater
• Lower ASU cost Confidential
Synthesis gas to
WHB
Effect of whisker carbon formation
Decreasing H2O/CH4
Confidential
How does a carbon fiber grow?
Ni
C fiber
4
2
1
C fiber
Ni
2
?
Ni
Graphite
whisker
20nm
Baker et al, J. Catal. 26, 51 (1972),
ibid. 30, 86 (1973)
Confidential
Imaging of carbon formation
• CH4:H2=1:1, 2.1mbar, 536°C
• Image size: 22x22nm2
• 10 frames/s (display rate x2.5)
• Growth rate ~1nm/s
Nature 427 (2004) 426
Confidential
Graphene Formation at Ni Steps
5nm
0s
0.2s
0.8s
1.0s
0.4s
0.6s
1.2s
1.4s
§ Spontaneous formation of mono-atomic Ni step sites
§ Transport of C and Ni atoms
Confidential
Surface dynamics
CH4
C
H2
Ni
III
II I
Ni
§ CH4:H2=1:1, 2.1 mbar, 525°C
§ Image size: 21.3x21.3nm2, 10 frames/s
(display rate x2.5)
Nature 427 (2004) 426; Phys. Rev. B 73, 115419 (2006)
Confidential
Growth mechanism
§ Ni transport proceeds along the Ni surface
§ C transport along the surface or sub-surface dominates bulk transport
and could be rate-limiting for growth
DFT - energy barriers for C transport
CH4
C
H2
III
I: Surface transport of
C
II I
Ni
Ni
1.42eV
II: Subsurface
transport of C
1.55eV
III: Bulk C transport
2.33eV
Experimental Growth
1.3-1.5eV
Barriers
Nature 427 (2004) 426
Phys. Rev. B 73, 115419 (2006)
Confidential
Effect of nanoparticle size
§ Energy gained by forming carbon layers
§ Stablizing interactions between the carbon layers
§ Bending the layers offsets the stabilization
Pt NPs
ca. 4nm
Pt NPs
ca. 2nm
Pt/MgO exposed to C2H6:H2:He=12:15:33 mL/min 600 oC
Peng, Somodi, Helveg, Kisielowski,
Specht, Bell, J. Catal. 2012, 286, 22.
Confidential
Effect of particle size and limits for carbon
formation at Ni
Equilibrated gas
Unequilibrated gas
CO/CO2/CH4/H2/H2O
104
Carbon
Relative weight (%)
15%Ni/MgAl2O4
103
dNi = 102 nm
102
101
No carbon
0.92%Ni/MgAl2O4
100
dNi = 7 nm
99
575
625
675
725
775
825
875
Temperature (K)
Carbon formation in a mixture of
C4H10/H2/H2O/He
Sehested, Christensen, Jacobsen, Helveg,
Rostrup-Nielsen, ACS Meeting (2005) p.PETR-137
Bengaard et al. J. Catal. 209, 354 (2002)
Confidential
Presentation outline
¡ Synthesis gas production overview
– The reactions
– The technologies
¡ The heart in synthesis gas production: The steam
reforming reaction over nickel
– Sintering (stability of Ni particles)
– Carbon formation and limits for whisker carbon formation
– Reaction over nickel and other transition metals
¡ Can we cheat the equilibrium in methanol synthesis?
Confidential
Steam reforming at low H2O/CH4 ratio
Whisker carbon growth
Steam
Natural gas
Oxygen
Tail Gas from FT
Prereforming
Synthesis
gas to
WHB
ATR
HTER-s
Rhodium particle
Confidential
0,9
0,8
Frequency
0,7
Experimental
0,6
0,5
0,4
0,3
0,2
0,1
0
10
30
50
70
90
110
130
150
More
Diameter (Å)
¡ Transmission electron microscopy
¡ In situ investigations
¡ Zirconia support
¡ 18 samples (Rh, Ru,
Ni, Ir, Pt, Pd)
Reactivity per site
¡ Plug flow reactor
¡ 500°C
Confidential
Turn over frequency (TOF)
¡ Combination of in situ TEM data and activity
measurements - Reaction at undercoordinated sites
Ligthart,Santen, Hensen,
J. Cat. 280 206 (2011)
Reaction order in agreement with:
Rostrup-Nielsen, J. Catal. 31 173 (1973)
Rh
Rh, Ru > Ni, Pd, Pt > Re > Co
Kikuchi et al., Bull. Jpn. Pet. Inst. 16 95 (1974)
Rh, Ru > Ni > Ir >Pd, Pt >> Co,Fe
Terrace
site J. Catal. 144 38 (1993)
site
Rostrup-Nielsen and Hansen, Defect
Rh, Ru > Ir > Ni > Pt, Pd
Qin et al., Catal. Today 21 551 (1994)
Ni
Ru > Rh > Ir > Pt > Pd
Pt
Ir
Reaction order observed by
Wei and Iglesia:
Pt > Ir > Rh > Ru, (Ni)
Ru, Rh
¡ TOF: Ru, Rh > Ni, Pt, Ir, Pd
Wei and Iglesia, J. Phys. Chem. B 108 (13) 4094 (2004)
Confidential
Jones et
al, J. Catal. 259, 147 (2008)
Micro-kinetic modelling
CH4(g)+2* = CH3*+H*
¡ 9 step model
– CH4 dissociative adsorption and
CO formation are considered to
rate determining steps
– Remaining reaction are assumed
to be quasi-equilibrated
CH3*+* = CH2*+H*
CH2*+* = CH*+H*
CH*+* = C*+H*
H2O(g)+2* = OH*+H*
¡ 8 intermediates
OH*+* = O*+H*
¡ 2 reaction barriers
C*+O* = CO*+*
¡ Shift reaction equilibrated
H* = 0.5H2(g)+*
CO* = CO(g)+*
CO(g)+H2O(g) = CO2(g)+H2(g)
Jones et al, J. Catal. 259, 147 (2008)
Confidential
Activity of the methane steam reforming
¡ Reaction barriers and
binding energies
scaled to ΔEO, ΔEC
using linear scaling
and BEP
F. Abild-Pedersen et al., Phys. Rev. Lett.
2007.
Model: Ru > Rh ~ Ni > Ir >>Pt ~ Pd
Exp: Ru ~ Rh > Ni ~ Ir ~ Pt ~ Pd
500°C, 1 bar, 10% conversion
Jones et al, J. Catal. 259, 147 (2008)
Confidential
Presentation outline
¡ Synthesis gas production overview
– The reactions
– The technologies
¡ The heart in synthesis gas production: The steam
reforming reaction over nickel
– Sintering (stability of Ni particles)
– Carbon formation and limits for whisker carbon formation
– Reaction over nickel and other transition metals
¡ Can we cheat equilibrium in methanol synthesis?
Confidential
Typical methanol process
Oxygen
Steam
Sulphur removal
Steam
Prereformer
Methanol
reactor
Secondary
reformer
Hydrogenator
Steam
Makeup
comp.
Natural
gas
Steam reformer
Condensate
Light ends to fuel
Product
methanol
Water
Raw
methanol
Raw methanol storage
Confidential
Methanol reactor
Synthesis gas
Syngas
4-5 cm
Boiling water
Steam
Methanol catalyst
CO + 2H2 → CH3OH
CO2 + 3H2 → CH3OH + H2O
7m
Water
Cu/Zn/Alumina
Pellets
Temperature: ~250°C
Product
May 9, 2014
Confidential
Typical methanol loop
What if we could…
Confidential
… simplify the methanol synthesis to this
Confidential
Can we cheat the methanol equilibrium?
¡ Presented at NGCS in Oslo 1990
¡ Various reactor layouts and sizes tested, but economic
assessment was unfavourable due to low STY
Confidential
The CONRAD concept
Synthesis gas
¡ CONdensing RADial flow converter
¡ Reactor comprising two-zone tubes
– High T zone in center of tube
– Low T zone along tube wall
Internals
¡ Internals for gas-liquid separation
¡ Balance between heat transfer and
mass transfer
Methanol
Confidential
The BioDME project
3G vehicle
development
Fuel
injection
development
Vehicle
production
Fuel
properties
Syngas
generation
and
cleaning
Vehicle
field test
DME
Distribution
& filling
DME
production
Black
liquor
LPG subst.
Biomass
www.biodme.eu
Confidential
Methanol Synthesis
MeOH reactor
Conrad
Synthesis Gas
Steam
Steam
MeOH cat.
Raw MeOH
Confidential
Observed syngas conversions
Confidential
Measured Space time yield in BWR
Step-out Space Time Yields in BWR
4
3.5
S T Y k g /k g /h
3
2.5
2
1.5
1
0.5
0
8-11 2011
28-12 2011
16-2 2012
6-4 2012
26-5 2012
15-7 2012
Date
Confidential
3-9 2012
23-10 2012
12-12 2012
Measured CONRAD performances
CONRAD STY relative to target
400
CONRAD A
350
CONRAD C
300
S T Y In d e x
CONRAD D
250
200
150
100
50
0
8-11 2011
28-12 2011
16-2 2012
6-4 2012
26-5 2012
15-7 2012
Date
Confidential
3-9 2012
23-10 2012
12-12 2012
Economic Assessment
Total installed costs for various MeOH production
processes
Reforming
Synthesis
Total
installed
cost
Synthesis
SMR+ATR1)
Loop
100
100
ATR
Loop
83
91
ATR
CONRAD
77
66
ATR
CONRAD1)
83
88
1) Assuming performance as demonstrated
The CONRAD concept works, but more work is needed!
Confidential
Summary
¡ Nickel sintering:
– We understand the underlying mechanisms for sintering of nickel particles
during steam reforming well
– This knowledge may be used in new catalysts
¡ Carbon formation:
– Mechanism involving surface diffusion of C and Ni atoms
– Surface defects act as nucleation centers for CNF growth
– Carbon limit and rate depends on both metal and particle size
¡ Steam reforming activity:
– Reaction proceeds at surface defects
– Rate highest for Ru and Rh in
agreement with microkinetic model
¡ The CONRAD concept works, but needs further development
Confidential
Acknowledgements
¡ Haldor Topsøe A/S:
S. Helveg
P. Lenvig Hansen
A. M. Molenbroek
B. S. Clausen
J. R. Rostrup-Nielsen
F.M. Morales
J.G. Jakobsen
M.S. Skjøth-Rasmussen
E.L. Sørensen
M. Thorhauge
¡ Danish Technical University:
T. W. Hansen
J.K. Nørskov (Stanford University)
F. Abild-Pedersen (Stanford University)
I. Chorkendorff
¡ University of New Mexico:
A. K. Datye
A. T. Delariva
S.R. Challa
Confidential