Photo-electrochemical Production of Hydrogen with Solar Energy C.K Ong*, A. Hankin, G.H Kelsall Department of Chemical Engineering Imperial College London [email protected] Outline 1. Motivation of H2 production using solar energy 2. Background to photo-electrochemical water splitting 3. Photo-electrochemical reactor operation 4. Process intensification 5. Summary and future work The Grand Challenge Energy supply < Energy demand Renewables Solar Energy Energy storage Hydrogen Climate change H2 + CO2 Electrochemical reduction of CO2 Ectrolysis of H2O e- + H2O + CO2 Chemical reduction of CO2 Other renewable electricity Sunlight + H2O + CO2 PV Photoelectrolysis of H2O CO2 capture Carbon-based fuels Fuel utilisation Photoelectrochemical reduction of CO2 H2 as an important ingredient in CO2 cycle CO2 Recycle Photoelectrochemical H2 Production using Solar Energy Semiconductor + hν Semiconductor (h+ + e-) Econduction hn Eband gap he+Evalence Photoanode Membrane Cathode Photoelectrochemical H2 Production using Solar Energy Semiconductor (h+ + e-) Semiconductor + hν 2H2O + 4h+ O2 + 4H+ 2H2 4H+ + 4eO2 e- O2 Econduction O2 hn O2 Eband gap O2 O2 O2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 H2 h+ Evalence Photoanode Membrane Cathode Photoelectrochemical H2 Production using Solar Energy Semiconductor (h+ + e-) Semiconductor + hν 2H2O + 4h+ O2 + 4H+ 2H2 4H+ + 4eO2 e- O2 Econduction O2 O2 hn O 2 O2 O2 O2 O2 O2 O 2 Eband gap H2 H2 H2 e- H2 H2 H2 H2 H2 H2 H2 H2 H2 h+ Evalence Photoanode Membrane Cathode Photo-anode material Cheap / abundent IDEAL Efficient Stable Photo-anode material : Fe2O3 Advantages • Absorbs in the visible light spectrum • Cheap and abundent • Stable under oxygen evolution reaction Disadvantages: • Required external bias to drive water splitting process CV of Fe2O3 in NaOH illuminated under white Xe lamp 0.80 Current Density A m-2 0.70 Light 0.60 0.50 0.40 0.30 0.20 0.10 4OH 4hVB O2 2 H 2O EO2 H 2O vs. HgO Hg 0.303 V 0.00 Dark -0.10 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 Electrode Potential (vs HgO|Hg) / V 0.6 0.7 0.8 Process Intensification – Increase Light Intensity • Illuminated Area = 16 mm x 25 mm • Light intensity adjusted with current supplied to solar simulator and distance between Fresnel lens reactor and Photoelectrochemical H2 Production Reactor Solar Simulator Mirror Reactor Fresnel Lens Process Intensification – Increase Light Intensity Predicted Current Density / A m-2 5 4.5 4 Model prediction 3.5 Experimental data 3 2.5 2 1.5 Fe2O3 | 0.1 M NaOH 0.4 V vs. HgO/Hg 1 0.5 0 0 1000 2000 3000 Light Intensity / W m-2 4000 Effect of temperature on dark CV 1.2 Current density / A m-2 1 0.8 25.5°C 0.6 29.1°C 33.6°C 0.4 39°C 46°C 0.2 0 -0.2 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Electrode potential (vs. HgO|Hg) / V Effect of temperature on light CV 1.8 1.6 1.4 Current density / A m-2 1.2 1 0.8 0.6 0.4 0.2 0 25.5°C 29.1°C 33.6°C 39°C 46°C -0.2 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Electrode potential (vs. HgO|Hg) / V Effect of temperature on PEC water splitting 0.9 -3.6 -4 0.85 0.8 -4.2 0.75 -4.4 0.7 -4.6 -4.8 Ln (jdark) = -3569.6 T-1 + 7.2776 0.65 -5 0.6 3.10E-03 3.15E-03 3.20E-03 3.25E-03 3.30E-03 3.35E-03 3.40E-03 T-1 / K-1 Ln (current density / A m-2) Ln (current density / A m-2) -3.8 Ln (jlight) = 856.16 T-1 – 2.0164 Summary • PEC water splitting has future potential to solve energy problem. • Increasing light intensity increases photo-current generated. • Increasing temperature would increase charge recombination. • Future work on materials development is required. • More development in reactor design, and reactor scale-up is required Acknowledgement Prof. Geoff Kelsall Dr. Klaus Hellgardt Dr. Steve Dennison Dr. Anna Hankin Thank you for your attention Questions ?
© Copyright 2024 ExpyDoc