The Chromospheric Field Probed by the He I 10830 Line Some Recent Developments Andreas Lagg Max-Planck-Institut fur ¨ Sonnensystemforschung ¨ Gottingen, Germany Coupling and Dynamics of the Solar Atmosphere Pune, India Nov-11 2014 1 The He I 10830 line He I Formation The He I atom (Centeno et al., 2008) 3 The He I 10830 line He I Formation Coronal Illumination - Ionization - Recombination (Centeno et al., 2008) 4 The He I 10830 line He I Formation He I – What can be observed? 5 The He I 10830 line He I Formation He I – Formation Height Avrett et al. (1994) 5 The He I 10830 line He I Formation He I – Formation Height Avrett et al. (1994) 5 The He I 10830 line He I Formation He I – Formation Height Poster on He D3 results: T. E. L. Libbrecht et al.: Spectrographic Helium D3 observations with SST/TRIPPEL Avrett et al. (1994) 5 The He I 10830 line Chromospheric B-Field with He I B-Field and He I 10830 A˚ Zeeman + PB effect reliable magnetic field information for B> 200 G 0.90 0.80 Paschen-Back effect for stronger fields saturated regime (8–100 G): directional information Tr2 Tr3 0.85 three (blended) HeI lines: (”blue” line + 2 ”red” lines) 0.005 V/IC Hanle effect sensitive regime: ≈0.1–8 G Tr1 0.95 I simultaneous observation of photosphere (Si, Ca) and chromosphere (He) 27aug03.004_he_2comp_str_bin1_1_profile_zoom3comp 1.00 0.000 −0.005 10826 10828 10830 Wavelength [Å] 10832 ./ps/27aug03.004.pikaia_he_2comp_str_bin1_1_profile_zoom3comp.x0094.y 6 He I Observatories Full-disk and hi-res instruments He I Observatories He I 10830 full disk instruments SOLIS VSM and FDP He I 10830 at high resolution TIP-1 (NSO; until 2014: Kitt Peak, 2014: Tucson: 2015: ???; Keller et al., 2003) (IAC; Tenerife; Mart´ınez Pillet et al., 1999; Collados et al., 1999) Chrotel (IAC/MPS; Tenerife; Collados et al., 2007) (KIS; Tenerife; Bethge et al., 2011) ProMag (prominences) CHIP (NSO; Sunspot; Elmore et al., 2008) TIP-2 (MacQueen et al., 1998) NAOJ Solar Flare Telescope (NAOJ; Hanaoka et al., 2011) Recent hi-res Spectropolarimeters FIRS, SPINOR, NIRIS, GRIS 7 He I Observatories Hi-Res Spectropolarimeters Recent Hi-Res Spectropolarimeters SPINOR @ DST (Sac Peak) NIRIS @ 1.6m NST (Big Bear) Socas-Navarro et al. (2006) Cao et al. (2012) full Stokes simultaneous obs. of several VIS + IR regions attached to 1.6 m NST at Big Bear ´ dual Fabry-Perot Interferometers virtually any combination of spectral line imaging polarimetry @ 0.′′ 25 GRIS @ 1.5m GREGOR (Tenerife) FIRS @ DST (Sac Peak) Jaeggli et al. (2010); Schad (2013) Collados et al. (2012) 4-slit, dual-beam spectropol. attached to 1.5 m GREGOR telescope (Tenerife) Fe I 630.2 & He I 1083 standard Czerny-Turner config. simultaneous with IBIS spectro-polarimetry @ 0.′′ 25 8 Some Recent results VTT - TIP-2 The magnetic field configuration of a solar prominence inferred from ´ spectropolarimetric observations in the He I 10830 A˚ triplet (Orozco Suarez et al., 2014) quasi-horizontal solution quasi-vertical solution Field strength [Gauss] 30 25 30 [arcsec] 20 20 15 10 10 5 0 0 0 20 40 [arcsec] 60 0 20 40 [arcsec] HAZEL inversions (Asensio Ramos et al., 2008) 60 70 s/slit pos Ambiguities (unresolved, plausibility argument: use quasi-horizontal solution): Zeeman effect: 180◦ ambiguity Hanle effect: 90◦ and 180◦ ambiguity 9 Some Recent results VTT - TIP-2 The magnetic field configuration of a solar prominence inferred from ´ spectropolarimetric observations in the He I 10830 A˚ triplet (Orozco Suarez et al., 2014) quasi-horizontal solution quasi-vertical solution Field strength [Gauss] 30 25 30 [arcsec] 20 20 15 10 10 5 0 0 0 20 40 [arcsec] 60 0 20 40 [arcsec] 60 Magnetic field strength quiescent prominence, on average 7 G up to 30 G at prominence feet (coinciding with high opacity) 9 Some Recent results VTT - TIP-2 The magnetic field configuration of a solar prominence inferred from ´ spectropolarimetric observations in the He I 10830 A˚ triplet (Orozco Suarez et al., 2014) quasi-horizontal solution quasi-vertical solution [arcsec] Field inclination [degree] 140 130 30 120 110 20 100 90 10 80 0 70 60 0 20 40 [arcsec] 60 0 20 40 [arcsec] 60 Magnetic field inclination inclined ≈77◦ to solar vertical; in between previous results: 60◦ (e.g., Bommier et al., 1994) and horizontal (Casini et al., 2003) 9 Some Recent results VTT - TIP-2 The magnetic field configuration of a solar prominence inferred from ´ spectropolarimetric observations in the He I 10830 A˚ triplet (Orozco Suarez et al., 2014) quasi-horizontal solution quasi-vertical solution Field azimuth [degree] 70 60 50 40 30 20 10 0 -10 -20 [arcsec] 30 20 10 0 0 20 40 [arcsec] 60 0 20 40 [arcsec] 60 Magnetic field orientation wrt. prominence axis inclined ≈58◦ / ≈156◦ to prominence long axis (unresolved ambiguity), both solutions: inverse polarity prominence 9 Some Recent results DST - FIRS He I Vector Magnetometry of Field-aligned Superpenumbral Fibrils (Schad et al., 2013) (a) SPECKLE Cont. (d) He I/IC 1082.999 Å (c) Ca II 8541.873 Å (b) Hα 6562.46 Å (e) He I VLOS [km/s] 10 TO DISK CENTER 240 5 θSPOT = 180 Y [Arcsec] 220 0 200 −5 θSPOT = 90 180 −10 550 560 570 X [Arcsec] 580 550 560 570 X [Arcsec] 580 550 560 570 X [Arcsec] 580 550 560 570 X [Arcsec] 580 550 560 570 X [Arcsec] 580 IBIS & FIRS Observations, NOAA AR 11408, Jan 29 2012, µ = 0.8 10 Some Recent results DST - FIRS He I Vector Magnetometry of Field-aligned Superpenumbral Fibrils (Schad et al., 2013) 0 (a) Magnetic Field Strength [G] 500 1000 1500 2000 0 (b) Inclination, θB (SOLAR) [deg] 45 90 135 180 −180 (c) Azimuth, χB (SOLAR) [deg] −90 0 90 180 240 220 220 220 200 200 180 530 Y [arcsec] 240 Y [arcsec] Y [arcsec] IBIS FOV 240 200 180 540 550 560 X [arcsec] 570 580 530 180 540 550 560 X [arcsec] 570 580 530 540 550 560 X [arcsec] 570 580 Photospheric field from Si I ME-inversions (H E LI X+ Lagg et al., 2009) 10 Some Recent results DST - FIRS He I Vector Magnetometry of Field-aligned Superpenumbral Fibrils (Schad et al., 2013) (a) Magnetic Field Strength [G] 100 200 300 400 500 600 0 (b) Inclination, θB (SOLAR) [deg] 45 90 135 180 −180 240 240 220 220 220 200 200 180 530 Y [arcsec] 240 Y [arcsec] Y [arcsec] 0 550 560 X [arcsec] 570 580 530 180 200 180 540 (c) Azimuth, χB (SOLAR) [deg] −90 0 90 180 540 550 560 X [arcsec] 570 580 530 540 550 560 X [arcsec] Fibril tracing (CRISPEX, Vissers & Rouppe van der Voort, 2012), careful disambiguation (Hanle & Zeeman), assumption on fibril height (1.75 Mm) 570 580 10 Some Recent results DST - FIRS He I Vector Magnetometry of Field-aligned Superpenumbral Fibrils (Schad et al., 2013) (a) Magnetic Field Strength [G] 100 200 300 400 500 600 0 (b) Inclination, θB (SOLAR) [deg] 45 90 135 180 −180 240 240 220 220 220 200 200 180 530 Y [arcsec] 240 Y [arcsec] Y [arcsec] 0 550 560 X [arcsec] 570 580 530 180 200 180 540 (c) Azimuth, χB (SOLAR) [deg] −90 0 90 180 540 550 560 X [arcsec] 570 580 530 540 550 560 X [arcsec] 570 580 B-strength: rise in strength towards inner endpoints 10 Some Recent results DST - FIRS He I Vector Magnetometry of Field-aligned Superpenumbral Fibrils (Schad et al., 2013) (a) Magnetic Field Strength [G] 100 200 300 400 500 600 0 (b) Inclination, θB (SOLAR) [deg] 45 90 135 180 −180 240 240 220 220 220 200 200 180 530 Y [arcsec] 240 Y [arcsec] Y [arcsec] 0 550 560 X [arcsec] 570 580 530 180 200 180 540 (c) Azimuth, χB (SOLAR) [deg] −90 0 90 180 540 550 560 X [arcsec] 570 580 530 540 550 560 X [arcsec] 570 580 B-inclination: change at inner endpoint towards sunspot 10 Some Recent results DST - FIRS He I Vector Magnetometry of Field-aligned Superpenumbral Fibrils (Schad et al., 2013) (a) Magnetic Field Strength [G] 100 200 300 400 500 600 0 (b) Inclination, θB (SOLAR) [deg] 45 90 135 180 −180 240 240 220 220 220 200 200 180 530 Y [arcsec] 240 Y [arcsec] Y [arcsec] 0 550 560 X [arcsec] 570 580 530 180 200 180 540 (c) Azimuth, χB (SOLAR) [deg] −90 0 90 180 540 550 560 X [arcsec] 570 580 530 540 550 560 X [arcsec] 570 580 B-inclination: remain horizontal until outer endpoint few fibrils: turn over again, connect in regions of opposite polarity photosphere 10 Some Recent results DST - FIRS He I Vector Magnetometry of Field-aligned Superpenumbral Fibrils (Schad et al., 2013) (a) Magnetic Field Strength [G] 100 200 300 400 500 600 (b) Inclination, θB (SOLAR) [deg] 45 90 135 0 180 −180 240 240 220 220 220 200 200 180 530 Y [arcsec] 240 Y [arcsec] Y [arcsec] 0 550 560 X [arcsec] 570 580 530 180 200 180 540 (c) Azimuth, χB (SOLAR) [deg] −90 0 90 180 540 550 560 X [arcsec] 570 580 530 540 550 560 X [arcsec] 570 580 B-azimuth: aligned ±10◦ with fibrils 10 Some Recent results NST - NIRIS/IRIM Multi-wavelength High-resolution Observations of a Small-scale Emerging Magnetic Flux Event and the Chromospheric and Coronal Response (Vargas Dom´ınguez et al., 2014) 11 Some Recent results NST - NIRIS/IRIM Multi-wavelength High-resolution Observations of a Small-scale Emerging Magnetic Flux Event and the Chromospheric and Coronal Response (Vargas Dom´ınguez et al., 2014) 11 Some Recent results NST - NIRIS/IRIM Multi-wavelength High-resolution Observations of a Small-scale Emerging Magnetic Flux Event and the Chromospheric and Coronal Response (Vargas Dom´ınguez et al., 2014) Ubiquitous small-scale reconnection scenario (Shibata et al., 2007)? 11 Some Recent results GREGOR - GRIS GREGOR/GRIS Data & First Results (June 2014) IC, 10824.17−10824.75 Å I, 10829.88−10830.70 Å (/Ic) V, 10827.13−10828.38 Å V, 10830.30−10830.79 Å 1.00 0.03 0.015 1.05•104 50 50 50 50 0.02 0.010 0.95 1.00•104 40 40 40 40 0.01 0.005 0.90 30 30 0.00 Arcsec Arcsec Arcsec Arcsec 9.50•103 30 30 0.000 0.85 9.00•103 20 20 20 −0.01 20 −0.005 10 −0.02 10 −0.010 −0.03 −0 0.80 8.50•103 10 8.00•103 −0 0 5 10 15 Arcsec 20 Stokes Ic 25 10 0 0.75 0 5 10 15 Arcsec 20 Stokes IHe 25 0 0 5 10 15 Arcsec 20 Stokes VSi 25 −0.015 0 5 10 15 20 25 Arcsec Stokes VHe 12 Some Recent results GREGOR - GRIS GREGOR/GRIS Data & First Results (June 2014) IC, 10824.17−10824.75 Å I, 10829.88−10830.70 Å (/Ic) V, 10827.13−10828.38 Å V, 10830.30−10830.79 Å 1.00 0.03 0.015 1.05•104 50 50 50 50 0.02 0.010 0.95 1.00•104 40 40 40 40 0.01 0.005 0.90 30 30 0.00 Arcsec Arcsec Arcsec Arcsec 9.50•103 30 30 0.000 0.85 9.00•103 20 20 20 −0.01 20 −0.005 10 −0.02 10 −0.010 −0.03 −0 0.80 8.50•103 10 8.00•103 −0 0 5 10 15 Arcsec 20 Stokes Ic 25 10 0 0.75 0 5 10 15 Arcsec 20 Stokes IHe 25 0 0 5 10 15 Arcsec 20 Stokes VSi 25 −0.015 0 5 10 15 20 25 Arcsec Stokes VHe 12 Some Recent results GREGOR - GRIS GREGOR/GRIS Data & First Results (June 2014) ≈0.′′ 40 (diff. limit: pol. noise level in 5 s: Arcsec spatial resolution: 9.50•103 0.′′ 25) 30 −4 5·10 IC 9.00•103 20 12 Some Recent results GREGOR - GRIS GREGOR/GRIS Data & First Results (June 2014) I 0.02 0.01 0.00 −0.01 −0.02 U Q x=79 y=210, PR0 9000 8000 7000 6000 5000 4000 0.04 0.02 0.00 −0.02 −0.04 0.04 V 0.02 0.00 −0.02 −0.04 1.0825•104 fitted observed 1.0830•104 1.0835•104 Wavelength [Å] 1.0840•104 12 Some Recent results GREGOR - GRIS GREGOR/GRIS Data & First Results (June 2014) IC, 10824.17−10824.75 Å I, 10829.88−10830.70 Å (/Ic) V, 10827.13−10828.38 Å V, 10830.30−10830.79 Å 1.00 0.03 0.015 1.05•104 50 50 50 50 0.02 0.010 0.95 1.00•104 40 40 40 40 0.01 0.005 0.90 30 30 0.00 Arcsec Arcsec Arcsec Arcsec 9.50•103 30 30 0.000 0.85 9.00•103 20 20 20 −0.01 20 −0.005 10 −0.02 10 −0.010 −0.03 −0 0.80 8.50•103 10 8.00•103 −0 0 5 10 15 Arcsec 20 Stokes Ic 25 10 0 0.75 0 5 10 15 Arcsec 20 Stokes IHe 25 0 0 5 10 15 Arcsec 20 Stokes VSi 25 −0.015 0 5 10 15 20 25 Arcsec Stokes VHe 12 Some Recent results GREGOR - GRIS GREGOR/GRIS Data & First Results (June 2014) Ca I – deep photosphere magnetic field strength, Comp: 5 azimuth angle, Comp: 5 inclination angle, Comp: 5 line−of−sight velocity, Comp: 5 2000 2 -90◦ ,+90◦ 0,2000 G 50 0◦ ,180◦ 50 -2,+2 50 km s−1 50 150 50 1500 1 40 40 40 40 20 20 20 30 0 [km/s] [o] 30 Arcsec 0 [o] 30 Arcsec [G] 1000 Arcsec Arcsec 100 30 20 50 500 −1 −50 10 10 −0 0 0 5 10 15 Arcsec 20 B-strength 25 10 0 10 0 0 5 10 15 Arcsec 20 Azimuth 25 0 0 5 10 15 Arcsec 20 Inclination 25 0 −2 0 5 10 15 20 25 Arcsec LOS-velocity 12 Some Recent results GREGOR - GRIS GREGOR/GRIS Data & First Results (June 2014) Si I – mid/upper photosphere magnetic field strength, Comp: 3 azimuth angle, Comp: 3 inclination angle, Comp: 3 line−of−sight velocity, Comp: 3 2000 2 -90◦ ,+90◦ 0,2000 G 50 0◦ ,180◦ 50 -2,+2 50 km s−1 50 150 50 1500 1 40 40 40 40 20 20 20 30 0 [km/s] [o] 30 Arcsec 0 [o] 30 Arcsec [G] 1000 Arcsec Arcsec 100 30 20 50 500 −1 −50 10 10 −0 0 0 5 10 15 Arcsec 20 B-strength 25 10 0 10 0 0 5 10 15 Arcsec 20 Azimuth 25 0 0 5 10 15 Arcsec 20 Inclination 25 0 −2 0 5 10 15 20 25 Arcsec LOS-velocity 12 Some Recent results GREGOR - GRIS GREGOR/GRIS Data & First Results (June 2014) He I – upper chromosphere magnetic field strength, Comp: 1 azimuth angle, Comp: 1 inclination angle, Comp: 1 line−of−sight velocity, Comp: 1 2500 -90◦ ,+90◦ 0,2000 G 50 0◦ ,180◦ 50 -5,+7 km s−1 50 6 50 150 2000 50 4 1000 20 20 30 20 2 [km/s] 0 100 [o] 30 40 Arcsec (0.15 <= ALPHA C1 <= 1.00) [G] 30 [o] 1500 40 Arcsec (0.15 <= ALPHA C1 <= 1.00) 40 Arcsec (0.15 <= ALPHA C1 <= 1.00) Arcsec (0.15 <= ALPHA C1 <= 1.00) 40 30 0 20 50 −2 −50 500 10 10 10 0 0 10 −4 −0 0 0 5 10 15 Arcsec 20 B-strength 25 0 5 10 15 Arcsec 20 Azimuth 25 0 0 5 10 15 Arcsec 20 Inclination 25 −0 0 5 10 15 20 25 Arcsec LOS-velocity 12 Some Recent results GREGOR - GRIS GREGOR/GRIS Data & First Results (June 2014) He I – upper chromosphere magnetic field strength, Comp: 1 azimuth angle, Comp: 1 inclination angle, Comp: 1 line−of−sight velocity, Comp: 1 800 -90◦ ,+90◦ 0,800 G 50 0◦ ,180◦ 50 -5,+7 km s−1 50 6 50 150 50 4 600 20 20 30 20 2 [km/s] 100 [o] 0 40 Arcsec (0.15 <= ALPHA C1 <= 1.00) 30 [o] 400 40 Arcsec (0.15 <= ALPHA C1 <= 1.00) 30 [G] 40 Arcsec (0.15 <= ALPHA C1 <= 1.00) Arcsec (0.15 <= ALPHA C1 <= 1.00) 40 30 0 20 50 −2 200 −50 10 10 10 0 0 10 −4 −0 0 0 5 10 15 Arcsec 20 B-strength 25 0 5 10 15 Arcsec 20 Azimuth 25 0 0 5 10 15 Arcsec 20 Inclination 25 −0 0 5 10 15 20 25 Arcsec LOS-velocity 12 Some Recent results GREGOR - GRIS Chromospheric Fine Structure: Summary Fine structure in the He I spectral region fine structure mainly He I intensity: almost absent in Stokes images / B-vector outlines velocity and density/temp. structure continuous decrease of fine structure in B with height: Ca I (deep photosphere): Si I (mid/upper photosphere): He I (chromosphere): 0.′′ 40 0.′′ 70 1.′′ 00 13 Outlook Instrumentation: What’s Next? Ground-based: DKIST & NLST DL-NIRSP (The Diffraction Limited Near-Infrared Spectropolarimeter, DKIST; Haosheng Lin) Spectral Range: 500 nm to 1800 nm Spectral resolution: up to 250000 ˚ Spatial resolution: 0.07′′ @10830A Target polarimetric accuracy: > 5 · 10−4 Ic NLST @ Hanle, India Spectropolarimeter: Based on SPINOR design Spectral Range: 500 nm to 1600 (5000) nm 14 Outlook Instrumentation: What’s Next? Space-borne: Solar-C SOLAR Magnetic elements (concentrated magnetic f eld region) 2000km 15 Outlook Science: What’s Next? Scientific future of He I 10830 To-Do list for He I 10830 Science obtain measurements at highest possible spatial resolution, S/N in the low 10−4 range (ideal: 2D FOV) reliable disambiguation methods (Van Vleck ambiguity, 180◦ Hanle & Zeeman ambiguity): → combination with other chromospheric line? reliable anisotropy determination (take into account coronal illumination, symmetry breaking due to, e.g., sunspots): → determine population imbalances reliable height determination: → high S/N, stereoscopy 16 Outlook Science: What’s Next? Bibliography Asensio Ramos, A., Trujillo Bueno, J., & Landi Degl’Innocenti, E. 2008, ApJ, 683, 542 Collados, M., et al. 1999, in Astronomische Gesellschaft Meeting Abstracts, 13–+ Avrett, E. H., Fontenla, J. M., & Loeser, R. 1994, in IAU Symp. 154: Infrared Solar Physics, ed. Rabin, D. M. (Kluwer Academic Publishers, Dordrecht, 1994), 35–47 Elmore, D. F., et al. 2008, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7014, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 16 Bethge, C., et al. 2011, A&A, 534, A105 Hanaoka, Y., et al. 2011, in Astronomical Society of the Pacific Conference Series, Vol. 437, Solar Polarization 6, ed. Kuhn, J. R., et al., 371 Bommier, V., et al. 1994, Sol. Phys., 154, 231 Cao, W., et al. 2012, in Astronomical Society of the Pacific Conference Series, Vol. 463, Second ATST-EAST Meeting: Magnetic Fields from the Photosphere to the Corona., ed. Rimmele, T. R., et al., 291 Casini, R., et al. 2003, ApJL, 598, L67 Centeno, R., et al. 2008, ApJ, 677, 742 Collados, M., et al. 2007, in Astronomical Society of the Pacific Conference Series, Vol. 368, The Physics of Chromospheric Plasmas, ed. Heinzel, P., Dorotoviˇc, I., & Rutten, R. J., 611 Collados, M., et al. 2012, Astronomische Nachrichten, 333, 872 Jaeggli, S. A., et al. 2010, Memorie della Societa Astronomica Italiana, 81, 763 Ji, H., Cao, W., & Goode, P. R. 2012, ApJL, 750, L25 Keller, C. U., Harvey, J. W., & Giampapa, M. S. 2003, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4853, Innovative Telescopes and Instrumentation for Solar Astrophysics, ed. Keil, S. L. & Avakyan, S. V., 194–204 Lagg, A., et al. 2009, in Astronomical Society of the Pacific Conference Series, Vol. 415, The Second Hinode Science Meeting: Beyond Discovery-Toward Understanding, ed. Lites, B., et al., 327 MacQueen, R. M., et al. 1998, Sol. Phys., 182, 97 Mart´ınez Pillet, V., et al. 1999, in Astronomische Gesellschaft Meeting Abstracts, 5–+ ´ Orozco Suarez, D., Asensio Ramos, A., & Trujillo Bueno, J. 2014, A&A, 566, A46 Schad, T. A. 2013, PhD thesis, The University of Arizona Schad, T. A., Penn, M. J., & Lin, H. 2013, ApJ, 768, 111 Shibata, K., et al. 2007, Science, 318, 1591 Socas-Navarro, H., et al. 2006, Sol. Phys., 235, 55 Trujillo Bueno, J. 2001, in ASP Conf. Ser. 236: Advanced Solar Polarimetry – Theory, Observation, and Instrumentation, 161 Vargas Dom´ınguez, S., Kosovichev, A., & Yurchyshyn, V. 2014, ApJ, 794, 140 Vissers, G. & Rouppe van der Voort, L. 2012, ApJ, 750, 22 17 Outlook Science: What’s Next? 18 Atomic Polarization (Trujillo Bueno, 2001) Case 1: Jlower = 0 −→ Jupper = 1 “normal” (scattering) case: upper level atomic polarization → polarization only in emission (1) (90◦ scattering) → no polarization in absorption (2) (forward scattering) 19 Atomic Polarization (Trujillo Bueno, 2001) Case 2: Jlower = 1 −→ Jupper = 0 degenerate lower level: upper level cannot carry atomic polarization → emitted beam (1) unpolarized → polarization of transmitted beam (2) depends on “uneven” population of lower level 19 Atomic Polarization (Trujillo Bueno, 2001) Case 2: Jlower = 1 −→ Jupper = 0 degenerate lower level: upper level cannot carry atomic polarization → emitted beam (1) unpolarized → polarization of transmitted beam (2) depends on “uneven” population of lower level blue component of He I line lower level carries atomic polarization red components of He I line both levels carry atomic polarization 19 Atomic Polarization: Emission Profiles (Trujillo Bueno, 2001) 1.0 2.0 0.8 1.5 Q/Imax (%) I/Imax (%) 0.6 0.4 0.2 1.0 0.5 0 –0.2 –1.0 2.0 2.0 1.5 1.5 V/Imax (%) –0.5 U/Imax (%) 0.0 1.0 0.5 1.0 0.5 0 0 –0.5 –0.5 –1.0 –3 –2 –1 0 – 0 1 (Å) 2 3 –1.0 –3 –2 –1 0 – 0 1 2 3 (Å) 20 Atomic Polarization: Absorption Profiles (Trujillo Bueno, 2001) 1.0 2.0 0.8 He I (blue) 0.4 1.5 Q/Imax (%) I/Ic (%) 0.6 He I (red) 0.2 Si I 0.0 1.0 0.5 0 –0.5 –0.2 2.0 1.5 1.5 V/Imax (%) U/Imax (%) –1.0 2.0 1.0 0.5 0 –0.5 –1.0 1.0 0.5 0 –0.5 –3 –2 –1 0 1 λ – ȕ0 (Å) 2 3 –1.0 –3 –2 –1 0 1 λ – ȕ0 (Å) 2 3 21 He I: From milli-Gauss to kilo-Gauss 2 magnetic field direction around B = 10−2 G, the density matrix elements start to be affected by the magnetic field caused by a feedback effect that the alteration of the lower-level polarization has on the upper levels Application: very weak fields (high S/N required!) ↓ Regime: 8 – 100 G ↓ magnetic field strength Regime: 0 – 8 G 1 ↑ linear polarization signal depends on: ↑ Hanle sensitive region Zeeman: ≥70 G Hanle saturation regime linear polarization signal depends on 1 magnetic field direction coherences are negligible and the atomic alignment values of the lower and upper levels are insensitive to the strength of the magnetic field Application: disk center, horizontal field: tan(2φ) = Q/U 22 Atomic Polarization Causes Linear Polarization H=5.00’’, γ=60.0, χ=0.0, vDopp=6.5, ds=0.50, dir=(0.0, 0.0, 0.0) 1.0 Tr1 B=1G B=25G B=100G 0.8 I 0.6 Tr2 Tr3 0.4 0.2 0.0 0.0015 0.0010 Q/IC 0.0005 0.0000 −0.0005 −0.0010 −0.0015 0.0015 0.0010 U/IC 0.0005 0.0000 −0.0005 −0.0010 −0.0015 0.004 V/IC 0.002 0.000 −0.002 −0.004 10828 10829 10830 10831 10832 23 Atomic Polarization Causes Linear Polarization 0.2 0.0 0.0015 0.0010 Q/IC 0.0005 0.0000 −0.0005 −0.0010 −0.0015 0.0015 0.0010 U/IC 0.0005 0.0000 −0.0005 −0.0010 −0.0015 0.004 23 DST - SPINOR SPINOR @ DST (Sac Peak) Spectro-POlarimeter for INfrared and Optical Regions SPINOR (Socas-Navarro et al., 2006) full Stokes simultaneous observation of several VIS + IR regions virtually any combination of spectral line Detector: slit length: Rockwell TCM 8600 120′′ 24 DST - FIRS FIRS @ DST (Sac Peak) Facility Infrared Spectrapolarimeter FIRS (Jaeggli et al., 2010; Schad, 2013) G rating S it U nit old Mirror F drical Lens 4-slit, dual-beam spectropolarimeter Cy in IR Pick-off Mirror drical Lens Cy in e IS Pick-off M irror L ns ible rm V old M irror F Fe I 630.2 & He I 1083 LCVR LCVR D simultaneous with IBIS WDM 0 1 er Fi t e e L ns L ns LCVR Wollaston Prism 0 Fi ter 1 LCVR ocalplane D F WDM I rared rm Det: Raytheon Virgo 1k×1k HgCdTe @He I: λ/∆λ > 3.5 · 105 , 0.′′ 36 FOV: 174′′ ×75′′ in 18 min S/N: 1000 in 7.5 s e L ns x arabolic Mirror Off-A is P Wollaston Prism ocalplane F 25 NST - NIRIS NIRIS @ 1.6m NST (Big Bear) Near-InfraRed Imaging Spectropolarimeter NIRIS (Cao et al., 2012) attached to 1.6 m NST at Big Bear ´ dual Fabry-Perot Interferometers 2x×2k HgCdTe HAWAII-2RG Wavelength range: 1000–1700 nm Spectral resolving power: λ/∆λ = 1.0–1.5 · 105 FOV: 85 arcsec Parasitic light: < 10−3 Spatial sampling: 0.083 arcsec/pixel−1 Exposure time: 20 ms for S/N ≥ 400 Strehl ratio: ≥ 0.7 Zeeman sensitivity: ≈ 10−4 Ic Spectroscopy: < 1 s cadence Vector spectro-polarimetry: < 10 s cadence 26 GREGOR / GRIS GRIS @ 1.5m GREGOR (Tenerife) GREGOR Infrared Spectrograph (Collados et al., 2012) attached to 1.5 m GREGOR telescope (Tenerife) standard Czerny-Turner configuration 1x×1k HgCdTe Rockwell TCM 8600 Wavelength range: Spectral resolving power: FOV: Spatial sampling: Zeeman sensitivity: Spectroscopy: Vector spectro-polarimetry: 1000–2300 nm λ/∆λ = 1.9 · 105 65 arcsec 0.126 arcsec/pixel−1 ≈ 10−4 Ic < .1 s cadence < 2 s cadence 27 GREGOR / GRIS Observation of Ultrafine Channels of Solar Corona Heating (Ji et al., 2012) NST IRIM in He I 10830 unexpected complexes of ultrafine loops (100 km) reaching from photosphere to base of corona origin: intense, compact magnetic field elements in intergranular lanes He I absorbing material injections with subsequent coronal brightening (observed in AIA/SDO loops) 52 Mm 28 GREGOR / GRIS Observation of Ultrafine Channels of Solar Corona Heating (Ji et al., 2012) 5 S-N (Mm) 4 3 2 1 0 0 1 2 3 E-W (Mm) 4 0 1 2 3 E-W (Mm) 4 0 1 2 3 E-W (Mm) 4 5 ˚ TiO 7057 A 29 GREGOR / GRIS Observation of Ultrafine Channels of Solar Corona Heating (Ji et al., 2012) 5 S-N (Mm) 4 3 2 1 0 0 1 2 3 E-W (Mm) 4 0 1 2 3 E-W (Mm) 4 0 1 2 3 E-W (Mm) 4 5 ˚ He I 10830 A 29 GREGOR / GRIS Observation of Ultrafine Channels of Solar Corona Heating (Ji et al., 2012) 5 S-N (Mm) 4 3 2 1 0 0 1 2 3 E-W (Mm) 4 0 1 2 3 E-W (Mm) 4 0 1 2 3 E-W (Mm) 4 5 AIA 171 A˚ 29 GREGOR / GRIS Observation of Ultrafine Channels of Solar Corona Heating (Ji et al., 2012) 5 S-N (Mm) 4 3 Why does the cool He I material coincide with the hot coronal material? 2 1 0 0 1 2 3 E-W (Mm) 4 0 1 2 3 E-W (Mm) 4 0 1 2 3 E-W (Mm) 4 5 AIA 171 A˚ 29 GREGOR / GRIS Observation of Ultrafine Channels of Solar Corona Heating (Ji et al., 2012) 5 S-N (Mm) 4 3 Could the coronal brightening be the cause for the enhanced He I absorption? 2 1 0 0 1 2 3 E-W (Mm) 4 0 1 2 3 E-W (Mm) 4 0 1 2 3 E-W (Mm) 4 5 AIA 171 A˚ 29 GREGOR / GRIS Observation of Ultrafine Channels of Solar Corona Heating (Ji et al., 2012) 5 S-N (Mm) 4 3 Missing: Stokes signal (interpretation of Hanle & Zeeman) 2 1 0 0 1 2 3 E-W (Mm) 4 0 1 2 3 E-W (Mm) 4 0 1 2 3 E-W (Mm) 4 5 AIA 171 A˚ 29
© Copyright 2024 ExpyDoc