UNIVERSITY OF PRETORIA NATURAL HAZARD CENTRE, AFRICA A Kijko, A Smit Email: [email protected] [email protected] Common Problems in Estimation of Seismic Hazard Parameters and their Solutions The Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, 1 Moscow, Russia Seismic Hazard Assessment Cornell-McGuire Procedure (Cornell, 1968) SITE PARAMETERS •activity rate λ •b-value •maximum magnitude mmax SITE 2 Types of Problems Faced 3 Incompleteness of Seismic Catalogue Combination of the largest earthquakes with complete data and variable threshold magnitudes (Kijko and Sellevoll, 1992). 4 Incompleteness of Seismic Catalogue (Kijko and Smit, 2012) 5 (Aki, 1965) 6 Previous Solutions for the Problem 7 Solution (Forgotten / Unknown) 8 Solution (Forgotten / Unknown) 9 Solution (Forgotten / Unknown) 10 (Kijko and Smit, 2012) Aki (1965) estimator 11 12 Performance of Methods Two complete catalogs simulation 1.4 Estimated b-value "true" b-value = 1 +/- Standard error Estimated b-value 1.3 1.2 1.1 1 0.9 0.8 0.7 100 150 200 250 300 350 400 Number of earthquakes 450 500 (Kijko and Smit, 2012) 13 Activity Rate of Estimation (Kijko and Smit, 2012) 14 Estimation of Maximum Possible Magnitude 15 Approach 1: Based on Event Catalogue 16 Approach 1: Based on Event Catalogue 1. Pisarenko et al. (1996) 2. Cooke (1979) 17 Approach 1 : Based on Event Catalogue 18 Approach 1: Based on Event Catalogue 1. Pisarenko et al. (1996) 2. Cooke (1979) 19 Approach 2: Bayesian (combine event catalogue with existing knowledge) (1) Courtesy Mark Petersen, USGS (2) Cratons Margins 20 Approach 2: Bayesian (combine event catalogue with existing knowledge) 21 Flaw in Cornell’s Bayesian Procedure Example of sample likelihod functions 0 Sample likelihood function "true" mmax = 6.92 -0.2 ln(likelihood function) mmax obs = 5.89 -0.4 -0.6 -0.8 -1 (Kijko, 2012) -1.2 -1.4 5.5 6 6.5 7 7.5 Magnitude 8 8.5 9 22 Flaw in Cornell’s Bayesian Procedure Effect of shift of sample likelihood function 7.1 Current EPRI Procedure After correction by shift of Sample Likelihood Function "true" mmax = 6.92 7 m max 6.9 6.8 6.7 6.6 (Kijko, 2012) 6.5 0 100 200 300 400 500 600 Number of events 700 800 900 1000 23 Possible Correction for Procedure 24 Possible Correction for Procedure 25 Possible Correction for Procedure Estimated mmax 400 Histogram of estimated m max 350 mean of estimated m max = 6.79 (error = -0.01) "true" mmax = 6.8 Histogram of estimared mmax 300 250 200 150 100 50 0 6.4 6.5 6.6 6.7 mmax 6.8 6.9 7 7.1 26 Example: South Africa • Deterministic Seismic Hazard Analysis for Cape Town • Based on Milnerton (1809) earthquake of magnitude 6.3 • Result ??? 27 Example: South Africa BUILDING CLASS #7: Reinforced Concrete Shear Wall with Moment Resisting Frame, High Rise 80 Central Damage Factor Central Damage Factor +/- SD Central Damage Factor [%] 70 60 50 40 30 20 10 0 4 5 6 7 8 Intensity MMI 9 10 11 12 28 Example: South Africa Expected Damage and Loss for Green Point Stadium Building Class Green Point Stadium Expected Damages 18% Uncertainty Interval [11, -25]% Estimated Loss due to ML = 6.87 earthquake Building Cost R4.4 billion ~US $600 million Expected Monetary Loss (@18%) R792 million ~US $108 million 29 References 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. Aki, K. (1965). Maximum likelihood estimate of b in the formula logN=a-bm and its confidence limits. Bull. Earthq. Res. Inst. Tokyo Univ, 43, 237-239. Clements, R. A., A. Gonzalez and D. Schorlemmer (2013). On the Testability of Maximum Earthquake Magnitude. Poster. New Developments in Earthquake Forecasting and Predictability Research. SSA 2013 Annual Meeting, Seismological Society of America, Technical Sessions, 17-19 April 2013, Salt Lake City, Utah. Cooke, P., 1979. Statistical Inference for bounds of random variables. Biometrika, 66, 367-374. Cornell, C. A. (1968). Engineering seismic risk analysis, Bull. Seism. Soc. Am. 58, 1583–1606. Cornell CA. Statistical analysis of maximum magnitudes in the earthquakes of stable continental regions. In: J Schneider (ed). Seismic hazard methodology for the Central and Eastern United States. The earthquakes of stable continental regions. Vol. 1. Assessment of large earthquake potential. Palo Alto, CA, USA: EPRI;1994. NP-4726, pp 5-27. Davis, R.C.,1951. On minimum variance in nonregular estimation, Ann. Math. Stat., 22, 43-57. Kijko A. (2012). On Bayesian procedure for maximum earthquake magnitude estimation. Research in Geophysics, 2, Number 1. http://www.pagepress.org /journals/index.php/rg [Research in Geophysics [eISSN 2038-9663] is a new Open Access, online-only, peer-reviewed journal published by PAGEPress, Pavia, Italy. Kijko, A., and M. A. Sellevoll (1989). Estimation of earthquake hazard parameters from incomplete data files, Part I, Utilization of extreme and complete catalogues with different threshold magnitudes, Bull. Seismol. Soc. Am. 79, 645–654. Kijko, A., and M. A. Sellevoll (1992). Estimation of earthquake hazard parameters from incomplete data files, Part II, Incorporation of magnitude heterogeneity, Bull. Seismol. Soc. Am. 82, 120–134.Weichert (1980). Kijko, A., Smit, A. (2012) Extension of the b-value Estimator for Incomplete Catalogs. Bull. Seism. Soc. Am, Vol 102, No 3, pp. 1283–1287. doi: 10.1785/0120110226. Molchan, GM., V. L. Keilis-Borok, and V. Vilkovich (1970). Seismicity and principal seismic effects, Geophys. J. 21, 323–335. Ordaz M, Aguilar A, Arboleda J ., 2007. Program for computing seismic hazard. CRISIS 2007. Ver. 5.5. Instituto de Ingenierı´a. UNAM, Mexico. Pisarenko, V.F. (1991), Statistical Evaluation of Maximum Possible Magnitude, Izvestiya, Earth Physics, 27, 757–763. Pisarenko, V.F., Lyubushin A., Lysenko, V.B., Golubeva, T.V., 1996. Statistical estimation of seismic hazard parameters: maximum possible magnitude and related parameters. BSSA, 86, 3, 691-700. Quenouille , M.H., 1956. Notes on bias estimation. Biometrika. 43, 353-360. Raschke M. (2012). Inference for the truncated exponential distribution. Stoch. Environ Res Risk Assess., 26, 127–138. Rosenblueth, E. (1986). Use of statistical data in assessing local seismicity, Earthq. Eng. Struct. Dynam. 14, 325–337. Rosenblueth, E., and M. Ordaz (1987). Use of seismic data from similar regions, Earthq. Eng. Struct. Dyn. 15, 619–634. Weichert, D. H. (1980). Estimation of the earthquake recurrence parameters for unequal observation periods for different magnitudes, Bull. Seismol. Soc. Am. 70, 1337–1346. Tate, R.F., 1959. Unbiased estimation of location and scale parameters, Ann. Math. Statist. 30, 331-366. 30 Thank You 31
© Copyright 2024 ExpyDoc