Role of Magnetic Symmetry in the Description and Determination of Magnetic Structures IUCR Congress Satellite Workshop 14-16 August Hamilton, Canada MAGNETIC POINT GROUPS Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain Historical Briefs 1929-30 Heesch: 4-dim groups in 3-dim space: 122 anti-symmetry point groups Shubnikov: re-introduces the concept of ‘anti-symmetry’ 1945 1951 Shubnikov: describes and illustrates all two-color point groups 1953 Zamorzaev: derives the magnetic space groups 1955 Belov, Neronova and Smirnova: complete listing of the magnetic space groups; BNS notation Birss: tensor properties of crystals with magnetic group symmetry Opechowski and Guccione: complete listing of the magnetic space groups; OG notation Koptsik: diagrams of magnetic space groups 1963-4 1965 1966 2001 2009-11 Litvin: corrected OG notation Litvin: tables of magnetic subperiodic and space groups Heesch-Shubnikov groups 1st type(32): M=G, 1’∉ M (classical crystallographic groups) 2nd type(32): M=G + 1’G, 1’∈ M (grey groups) 3rd type(58): M=H + 1’(G-H) |G|/|H|=2 (black-and-white groups) Black-and-white groups Example The group of the square 4mm (C4v) Symmetry operations of 4mm: {e 4z 4z 2z mx my m+ m-} Stereographic Projections of 4mm general position symmetry elements Black-and-white groups Example M=G(H)=H+1’(G-H) G=4mm: H1=4: {e 4z 4z 2z mx my m+ m-} {e 4z 4z 2z } Black-and-white group M=4mm(4) = 4mm : {e 4z 4z 2z mx my m+ m-} Black-and-white groups Example M=G(H)=H+1’(G-H) G = 4mm: {e 4z 4z 2z mx my m+ m-} H = 2m+m-: {e 2z m+ m-} Black-and-white group M=4mm(2mm) = 4mm : {e 4z 4z 2z mx my m+ m-} Black-and-white groups Example M=G(H)=H+1’(G-H) G = 4mm: {e 4z 4z 2z mx my m+ m-} H = 2mxmy: {e 2z mx my} Black-and-white group M=4mm(2mm) = 4mm : {e 4z 4z 2z mx my m+ m-} Black-and- white point groups Bradley and Cracknell The mathematical theory of symmetry in solids Magnetic point groups (types I and III) International Tables for Crystallography (2006). Vol. D.! Borovic-Romanov, Grimmer. Chapter 1.5 Magnetic properties Magnetic point groups derived from the representations of 4mm(C4v) magnetic groups 4mm 4m’m’ 4’mm’ 4’m’m —— Indenbom (1959), Bertaut (1968) Bilbao Crystallographic Server http://www.cryst.ehu.es H. Stokes, B.J. Campbell Magnetic Space-group Data http://stokes.byu.edu/magneticspacegroups.html D.B. Litvin Magnetic Space Groups v. V3.02 http://www.bk.psu.edu/faculty/litvin/Download.html Bilbao Crystallographic Server Magnetic Point Groups (under development) coordinate triplets axialvector coefficients Geometric interpretation matrixcolumn presentation Bilbao ! Crystallographic ! Server Curie’s principle characteristic symmetry of a phenomena (the invariance group of a phenomena) the maximum symmetry compatible with the phenomena A phenomenon can exist in a system which possesses either the characteristic symmetry of the phenomenon Pphen or the symmetry of one of the subgroups of Pphen PG ≤ Pphen PG ≤ Pphen1 ⋂ Pphen2 ⋂ … ferromagnetism (spontaneous magnetization Ms - axial vector): Pphen= ∞/m2’/m’ ferroelectricity (spontaneous polarization Ps - polar vector): Pphen= ∞ m1’ Polar and axial vectors polar vector polar axial ∞m ∞ /m Marc De Graef ©2009 IUCr" Transformation of polar and axial vectors under space and time inversion polar vector polar ∞ m1’ axial vector axial ∞/m2’/m’ The groups in red are compatible with both phenomena Grimmer, Leuven 2006 Transformation of an axial vector parallel to the 2-fold axis point group 2/m grey point group 2/m1’ Marc De Graef ©2009 IUCr" Transformation of an axial vector parallel to the 2-fold axis point group 2’/m point group 2/m’ point group 2’/m’ Marc De Graef ©2009 IUCr" Transformation of an axial-vector parallel to the mirror plane under " the operations of the point group 2/m and 2’/m’ Marc De Graef ©2009 IUCr" Tensor properties of non-magnetic crystals (brief summary) Tensor representation of physical properties ︷n Tijk…l (3n components) physical property crystallographic symmetry intrinsic symmetry pyroelectric coefficients pyroelectricity: electric dipole moment change electric conductivity: current density ∆Pi = pi ∆T i=1,2,3 electrical conductivity ji = X ij Ej temperature change applied electric field j i,j=1,2,3 piezoelectric modula piezoelectric effect: polarization pi = X jk dijk Sjk stress tensor Tensor properties of non-magnetic crystals Crystallographic symmetry Transformation properties under W ∈ PG X polar tensor: d0ijk...n = Wip Wjq ...Wnu dpqr...u p,q,r,...,u 0 d axial tensor: ijk...n = |W | Neumann´s principle X Wip Wjq ...Wnu dpqr...u p,q,r,...,u The symmetry operations of any physical property of a crystal must include the symmetry operations of the point group of the crystal X Wip Wjq ...Wnu dpqr...u polar tensor: dijk...n = p,q,r,...,u axial tensor: dijk...n = |W | X p,q,r,...,u Wip Wjq ...Wnu dpqr...u Tensor properties of non-magnetic crystals polar tensor: dijk...n = X Wip Wjq ...Wnu dpqr...u p,q,r,...,u axial tensor: dijk...n = |W | Simple examples: W= -1 0 0 0 -1 0 0 0 -1 polar tensors: if n=2k+1 axial tensors: if n=2k Tabulations: X Wip Wjq ...Wnu dpqr...u p,q,r,...,u dij...m ⌘ 0 dij...m ⌘ 0 Nye (1957): Physical Properties of Crystals Birss (1966): Symmetry and Magnetism Sirotin, Shaskolskaya (1979): Fundamentals of Crystal Physics Intrinsic symmetry Tensor isomers Tensor properties of non-magnetic crystals 0 Ti1 i2 ...ip k1 k2 ...kp = Tk1 k2 ...kp i1 i2 ...ip symmetrization: arithmetic average of all isomers of A 1 A[ik] = (Aik + Aki ) 2 1 A[ijk] = (Aijk + Akij + Ajki + Ajik + Akji + Aikj ) 6 antisymmetrization: arithmetic average of all isomers of A (+) cyclic permutations (-) non-cyclic permutations 1 A{ik} = (Aik Aki ) 2 1 A{ijk} = (Aijk + Akij + Ajki Ajik Akji Aikj ) 6 partial symmetrization/antisymmetrization: Bijk = Ai[jk] : Bijk = Bikj Bijkl = A[ij][kl] : Bijkl = Bjikl = Bijlk = Bjilk Symmetric polar tensor of rank two generators -1 0 0 0 -1 0 0 0 -1 ¯1 -1 0 0 0 1 0 0 0 -1 ¯1, 2y -1 0 0 0 -1 0 0 0 1 0 -1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 1 0 Nye notation ¯1, 2y , 2z ¯1, 2y , 2z , 4z ¯1, 2y , 2z , 4z , 3+ xxx Piezoelectric effect electric polarization p produced by mechanical stress S polar vector pi = X polar symmetric tensor of second rank dijk Sjk jk polar tensor of third rank symmetric in the last two indices matrix presentation: i k 11 22 33 23 13 12 ↵" 1 2 3 4 5 6 pi = i = 1, 2, 3 pi = " (3x1) X di↵ S↵ ↵ ↵ = 1, ..., 6 " di↵ S"↵ " (3x6) " (6x1) Symmetry restrictions on form of piezoelectric tensor Grimmer, Leuven 2006 Tensor properties of magnetic crystals M=H+S’H |M|/|H| = 2 magnetic point group subgroup of non-primed H = {Wi} symmetry operations additional generator S’=S1’ 1’ (+) i tensor (-) c tensor non-primed symmetry operations X polar tensor: dijk...n = axial tensor: dijk...n Wip Wjq ...Wnu dpqr...u p,q,r,...,u X = |W | Wip Wjq ...Wnu dpqr...u p,q,r,...,u additional primed generator S’ polar c tensor: dijk...n = ( 1) X Sip Sjq ...Snu dpqr,...,u p,q,r,...,u axial c tensor: dijk...n = ( 1) |S| X p,q,r,...,u Sip Sjq ...Snu dpqr,...,u Tensor properties of magnetic crystals Example: magnetic group 4’22’=222+4’z 222 polar tensor of rank 2: ij non-primed subgroup 222: ij = X Wip Wjq pq pq additional primed generator: 4z= i tensor ij = X Sip Sjq pq pq 0 -1 0 1 0 0 0 0 1 11 0 0 0 22 0 0 0 33 c tensor ij = ( 1) X Sip Sjq pq 11 0 0 0 11 0 0 0 33 11 0 11 0 0 0 0 0 33 pq Tensor properties of magnetic crystals n even i tensor c tensor n odd i tensor c tensor polar axial polar axial polar axial polar ¯1 + — + — — + — + 0 1 + + — — + — — 10 ¯1 + — — + — + + + — magnetization Ms - axial c tensor of rank 1 polarization Ps - polar i tensor of rank 1 axial Tensor properties of magnetic crystals Symmetry-adapted forms of the spontaneous magnetization M axial c tensor of rank 1 non-primed operations Mi = |W | primed operations X Wip Mp p Mi = ( 1)|S| X Sip Mp p ferromagnetic (pyromagnetic) effect in 31 magnetic point groups Tensor properties of magnetic crystals Grey groups: M=G+1’G n even i tensor polar ¯1 + 0 1 + 10 ¯1 + n odd c tensor i tensor c tensor axial polar axial polar axial polar axial — + — — — + + — — + — — — — + — + + + + — c tensors: must be null in any grey group i tensors: the form of any tensor in M is identical to that of G 0¯ grey groups with 1 1 polar i tensors of rank 2k+1: null axial i tensors of rank 2k: null Tensor properties of magnetic crystals Black-white groups: M=H+W’H n even i tensor polar ¯1 + 0 1 + 10 ¯1 + n odd c tensor i tensor c tensor axial polar axial polar axial polar axial — + — — — + + — — + — — — — + — + + + + — Birss, 1966: i and c tensors of ranks up to four i tensors: the form of any tensor in M is identical to that of G=H+1’W’H c tensors: more complicated relation to classical groups axial c tensors of even rank and polar c tensors of odd rank are null for 21 M ∋ ¯ 1 polar c tensors of even rank and axial c tensors of odd rank are null for 21 M ∋ 10 ¯ 1 Magnetoelectric effect indiced magnetization X applied electric field linear effect Mi = Qij Ei (electrically induced) j polar i tensor axial c vector magnetoelectric tensor Q: non-primed Qij symmetry operations Curie, 1894 Astrov, 1960 axial c tensor of rank 2 X = |W | Wip Wjq Qpq pq X primed Q = ( 1)|S| symmetry operations ij Sip Sjq Qpq pq the effect can occur in 58 type I and III no effect in type II (grey) groups Indenbom, 1960 Birss, 1966 X T ‘inverse’ magnetoelectric Pi = (Q )ij Hj effect (magnetically induced) Xj X higher-order Mi ⇠ Qij Hj + Rikl Hk Hl + . . . magnetoelectric effects j kl Bilbao Crystallographic Server Symmetry-adapted form of the magnetoelectric tensor for all magnetic point groups Grimmer, Leuven 2006
© Copyright 2024 ExpyDoc