Improving the Storage Capability of
a Microgrid with a Vehicle-to-Grid
Interface
Vicente Leite, Ângela Ferreira and José Batista
Polytechnic Institute of Bragança, Portugal
Outline
• Motivation
• The IPB microgrid
• Energy storage capability
• IPB Eco Buggy
• V2G and G2V interface
•
•
•
•
Bidirectional power converter topology
Control strategies
Simulation results
Experimental results
• Conclusions
Motivation
• Energy storage systems enhance the exploitation of Renewable
Energy Sources (RES)
• Minimization of intermittency and variability effects of most RES
• Balance in system cost
• Contribution to frequency and voltage stability by providing ancillary services
• Backup active power, acting as a manageable load and discharging energy back to
the grid when necessary
• Reactive power support
• Peak-shaving
• Under a microgrid concept, plug-in electric vehicles (PEV) have an
important distributed energy storage capacity
• Deployment of battery chargers to allow a bidirectional power flow
• Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) concept
IPB Microgrid Infrastructures
PV glass
facade of
the library
Photovoltaic systems
SB 2100TL
Wind turbine
SB 3000
Pico hydro power plant
WB 1700
WB 1200
SB 1200
Loads
Microgrid
230V, 50Hz
SB 5048
Bi-directional
battery inverter
for off-grid
systems
DC
voltage
LiFePO4
Battery
Biodiesel
production unit
Generator
ECO Buggy IPB
Battery bank
Microgrid set up in the laboratory
Energy storage capability
Semi-automatic production
unit of biodiesel from used
cooking oil and (bio)diesel
GenSet (5 kW)
Bank of batteries
8×6V, 200A
Electric vehicle
battery
IPB Eco Buggy
Motor
Axial Flux PMSM
High efficiency
High torque density
13 kW; 64,87 V;
149,5 A; 6000 rpm;
20,7 Nm; 8 poles; 400 Hz
Battery
LiFePO4
Low cost of raw materials
Long life cycle
Safety characteristics
96 V; 70 Ah; 90 Kg
V2G/ G2V interface
Bidirectional power converter topology
V2G/ G2V interface
Control strategies
V2G (discharge) and G2V (charge) control
*
P
Vbat.
÷
*
I b,
V2G
Current (A)
*
I b,
G2V
Voltage (V)
Ib
V2G/ G2V interface
d
vg = vgd = v
q
id
Voltage Oriented Control of the VSI
i
iq
i d*
Vdc*
÷
Q*
v
i q*
v d'
v q'
v*d
vc* = vα*
vgd
v *q
vgq = 0
vg = vgd = v
Simulation results
500
Vdc sim
Vdc ref
480
DC-Link Voltage (V)
460
440
420
400
380
360
340
320
300
0.5
1
1.5
2
Time(s)
G2V
P ≈1000 W
2.5
3
3.5
4
V2G
P = 1000 W
Q = 0 var
P=0W
Q=
Q=
- 400 var 400 var
Battery voltage (V)
Battery current (A)
Simulation results
20
ib sim
ib ref
10
0
-10
-20
0.5
1
1.5
2
Time(s)
2.5
3
3.5
4
0.5
1
1.5
2
Time(s)
2.5
3
3.5
4
99.8
99.7
99.6
99.5
99.4
G2V
P ≈1000 W
V2G
P = 1000 W
Q = 0 var
P=0W
Q=
Q=
- 400 var 400 var
Simulation results
10
d current (A)
5
id ref
id sim
0
-5
-10
0.5
1
1.5
2
Time(s)
2.5
3
3.5
4
1
1.5
2
Time(s)
2.5
3
3.5
4
q current (A)
4
2
iq sim
iq ref
0
-2
-4
0.5
G2V
P ≈1000 W
V2G
P = 1000 W
Q = 0 var
P=0W
Q=
Q=
- 400 var 400 var
Simulation results
Vg/30
Ig
Ig amp
Grid Voltage (V) and Current (A)
15
10
5
0
-5
-10
1.4
1.45
G2V
1.5
1.55
1.6
Time(s)
1.65
V2G
1.7
1.75
Simulation results
Vg/30
Ig
Ig amp
Grid Voltage (V) and Current (A)
15
10
5
0
-5
-10
2.3
2.35
2.4
P = 1000 W
2.45
2.5
Time(s)
2.55
2.6
P =0W
2.65
2.7
Simulation results
Vg/30
Ig
Ig amp
Grid Voltage (V) and Current (A)
15
10
5
0
-5
-10
2.9
2.92
2.94
2.96
Q = 0 var
2.98
3
Time(s)
3.02
3.04
3.06
Q = - 400 var
3.08
3.1
Simulation results
Vg/30
Ig
Ig amp
Grid Voltage (V) and Current (A)
15
10
5
0
-5
-10
3.4
3.42
3.44
3.46
3.48
Q = - 400 var
3.5
Time(s)
3.52
3.54
3.56
Q = 400 var
3.58
3.6
Experimental results
8
400
0
Vg
-200
-400
id and iq (A)
Vg, V pll (V)
200
0.04
0.05
0.06 0.07
Time(s)
0.08
id
iq
4
2
Vpll
0.03
V g/30 (V ), ig and Ig (A )
10
6
0
-2
0.09
0
0.05
Grid voltage and PLL output
0.1
Time(s)
0.15
5
0
-5
Vg/30
ig
ig amp
-10
-15
0.2
0.02
Grid current dq components
0.04
0.06
0.08
Time(s)
0.1
0.12
0.14
Step in the reactive power
reference (-500 var)
1500
1000
1000
0
-5
Vg/30
ig
ig amp
-10
-15
0
0.05
0.1
Time(s)
0.15
Step in the active power
reference (400 W)
0.2
V dc (V ), p (W ), q (V ar)
5
V dc (V), p (W ), q (V ar)
Vg/30 (V ), ig and Ig (A )
10
Vdc
p-meas
q-meas
500
0
0
0.05
0.1
Time(s)
0.15
Step in the active power
reference (400 W)
0.2
800
600
400
200
Vdc
p-meas
q-meas
0
-200
0
0.05
0.1
Time(s)
0.15
Step in the reactive power
reference (500 var)
0.2
Conclusions
• The V2G/G2V interface project will provide an
additional energy storage element
• The vehicle’s battery improves the storage capability of the
microgrid
• It acts as a manageable load or generator, smoothing the load diagram
• The adopted topology and control strategies
are able to manage bidirectional active and
reactive power flow
• Allow reactive power support
• Improve the reliability and quality criteria of the energy supply
Muchas gracias
Vicente Leite
[email protected]