D Onsager theory “redux” Hard rods: D ⇤ = ⇡D LcD⇤ /4 ⇡ D/L = for⇡(D/2) ⇤Estimate isotropic-nematic 2 Lc ⇡ D⇥ Rod-rod ! S ⇡ 1 ⇥ rot (N 1) 1 coexistence: arrangements (N 1) 1 Vtot 6 Vex ⇤ VVex cVex cVex cVex tot⇤1Vtot 1 ⇤ ⇤) ⇡ 2 2 S (c == Srot 2 2 S (c) CM CM cVex S (c ) S CM rot 2 L SCM (c) ⇡ 2 L = ⇡(D/2)2 Lc⇤ ⇡ D/L critical density: ⇤ side! c =- N/V # density of rods c = N/V ⇤ ⇤ 2 view S ⇡ 1 1 rot D c ⇡ 1/V ⇡ 1/(DL ) ex 1⇥ CM c ⇤ 2 2 c ⇥ “VolumeSExcluded” rot ⇡ 1to center of DL 2 c ⇡ 1/V ⇡ 1/(DL ) Center of mass entropy decrease ! from inter-rod exclusions: S mass of rod by neighbor rod: Vex 2 2 V ⇤ DL ex | sin || sin | ⇤ DL cVex S⇤CM (c) 2⇡ = ⇡D Lc ⇤ /42 ⇡ D/L Rotational entropy diff. (per rod) between isotropic and aligned states: ⇤ SSCM (c rot ⇡)1= freely rotating! (isotropic) D aligned! (nematic) L (c ) = S ex SCM (c⇤ ) critical = volume Srot fraction: 2 ⇤ = ⇡(D/2) Lc ⇡ D/L ⇤ top! view c⇤ ⇡ 1/Vex ⇡ ⇤ 1/(DL2 ) SCM (c⇤ ) =exSrot c ⇡ 1/V Srot D ⇤ 2 2 c ⇡ 1/V ⇡ 1/(DL = ⇡D Lc ⇤ex/4 ⇡ D/L ) L DL ⇤ orientational! entropy dominates:! Isotropic Phase ⇡ 1/(D positional! 2 c⇤entropy ⇡ 1/Vdominates:! ⇡ 1/(DL ) ex Nematic Phase ⇠ D/L ICAMP 2014 (Grason - Lecture I) - scaled vol. frac. p L ⌧ ` ⇤ p ⇠ D/` p Isotropic-Nematic for semi-flexible filaments: ⇤ L⇠ ⌧D/L `p , rigid filament⇠ `p ⇤ ⇠ D/L ⇠ `p ` ⇤L p Onsager rod limit ⇠ D/L For For L `p , ( c⇤ ⇠ 1/L2 ) ⇤ c ⇠ 1/L coiled filament chain flexible beyond ! persistence length ⇤ ⇠ D/`p 2 L `p ⇤⇤ D/` c⇠ ⇠ 1/L p ⇤ L `p ⇠ D/`p ⇤ ( c ⇠ 1/L ) ⇤ ⇠ `p ⇠ D/`p nematic isotropic - scaled length Dijkstra & Frenkel, PRE (1995). continuous ! filament chain uncorrelated, rigid links ICAMP 2014 (Grason - Lecture I) 2 Condensed filaments: orientational & positional order ⇤ c ⇠ 1/L Orientational elasticity (nematic): n(x) - nematic director! (chain orientation) Z ⇢(x) o ⇥ ⇤ ⇥ ⇤ 1 2 2 FF rank = d3 x K1 (r · n)2 + K2 n · (r ⇥ n) + K3 (n · r)n 2 Z Z twist splay Fliquid Fsolid 1 = 2 Z n(x) 1 1 3 2 =Fliquidd = x B(⇢(x) d3 x ⇢B(⇢(x) ⇢20 )2 + C(r⇢)2 0 ) + C(r⇢) 2 2 bend 3 d x 2 (ukk ) + 2µuij uij ⇢(x) ⇢(x) 7 ZPositional elasticity (columnar): “Density elasticity” (line liquid): 2D 1 3 2 2 2 Z 1 F = d x (u ) + 2µuij uij Z solid kk 0 2 i uj +1 @j u3i ) 1 u = (@ 3 2 2 ij Fliquid = d x B(⇢(x) ⇢0 ) + C(r⇢) 2 Fsolid = d x (ukk )2 + 2µuij uij 2 2 B(⇢(x) ⇢(x) Fsolid ⇢ ) + C(r⇢) ⇢(x) - local chain density 1 = 2 Z preferred ! density 1 uij = (@i uj + @j ui ) - 2D elastic strain 2 1 uij = (@i uj + @j ui ) displacement u(x) - chain 2 from equilibrium u(x) d3 x (ukk )2 + 2µuij uij u(x) ICAMP 2014 (Grason - Lecture II) n · (r ⇥ n) / @z xy k ? Structure factor of polymer nematic: “Butterfly” profile n · (r ⇥ n) / @zn · xy (r ⇥ n) / @z xy kB T S(k) = h| ⇢(k)| i = 2 2 2 4 2 2 B + Ck + K1 ⇢0 kz + K3 ⇢0 kz /k? kB T 2 S(k) = h| ⇢(k)| i = 2 2 B + Ck + K1 ⇢0 k z 2 k 2 = h| ⇢(k)| i = kB T Density fluctuations are 2 2 2 extinguished along k B + Ck + K1 ⇢0 k? z= 0+! K3 WHY??? kz k? ICAMP 2014 (Grason - Lecture II)
© Copyright 2024 ExpyDoc