Katharina Benisch, Bastian Graupner, Dedong Li, Christof

Katharina Benisch, Bastian Graupner, Dedong Li, Christof Beyer,
Addisalem Mitiku, Sebastian Bauer
Institute of Geosciences, University of Kiel, Contact: [email protected]
6th Trondheim Carbon Capture and Storage Conference
14.-16.6.2011
Motivation
Simulation of CO2 injection  THMC modelling system
Heat transport
Thermal
Geomechanic
Deformation
Hydraulic
Geochemistry
Fluid dynamics
Transport und Reactions
6th Trondheim CCS Conference
14.-16.6.2011
2
Codes
= Scientific open-source code development for coupled Thermo-HydroMechanical-Chemical (THMC) systems in the environment
 Object-oriented programming
 Using Finite-Element-Method
Schlumberger ©ECLIPSE
• widely used multiphase
simulator
• Finite-Difference-Method
• CO2Store option
Benefits of the OpenGeoSys-ECLIPSE coupling:
• benefit from the fast computation time of ECLIPSE
• Extend the capabilites of the ECLIPSE simulator for modelling CO2 injection
regarding Geochemistry and Geomechanics
• Using already existing fluid flow models build in ECLIPSE
6th Trondheim CCS Conference
14.-16.6.2011
3
Implementation of the coupled code
Object MultiphaseFlow
Multi-Phase-Flow
OGS-FEM
OpenGeoSys
Interface
DuMuX
OGS-FEM
Object Heat
Heat transport
Object Deformation
Elasto-(visko)-plastic
deform., strain, stress
time loop
# chem. components times:
Object SoluteTransport
conservative transport of a species
(advection, dispersion, diffusion)
Object React
Kinetic and equilibrium
geochemistry
OGS
Equilib. Reactions
ChemApp
parameter
parameter
Kinetic Reactions
parameter
ECLIPSE
Interface
ECLIPSE-E100
ECLIPSE-E300
SUPCRT92
Feedback: Modified Porosity & Permeability
 OGS work frame
Pα
Sα
qα
CO2, sol
ne
K
ρα
Ppor
OGS
Thermodynamic
Databases
FactSage, HKF,
Phreeqc, …
6th Trondheim CCS Conference
14.-16.6.2011
4
Benchmarking
Benchmark 1:
2D Tracer Transport in a 1Phase radial flow field (after Moench and Ogata,1981)
Good agreement of the coupled ECLIPSE-GeoSys code with the analytical
solution.
Differences between the tracer fronts result from different mathematical
methods which are used within the codes.
6th Trondheim CCS Conference
14.-16.6.2011
5
Benchmarking
Benchmark 2:
Advective-dominated two phase flow in a homogeneous system (after
Buckley and Leverett, 1942)
(Paul, 2003)
t1
t2
t3
 Linear kr-Sw-function and pc-Sw-function
 GeoSys: PP formulation
 ECLIPSE: PS formulation
6th Trondheim CCS Conference
14.-16.6.2011
6
Benchmarking
Benchmark 3:
3D multiphase flow field with CO2 injection
 Radial settings
(injection left, boundary condition right)
CO2 injection
 Adequate for model development
and testing
Breakthrough
curves
6th Trondheim CCS Conference
14.-16.6.2011
7
Field site application
Geological Model:
Extend: 29 x 28 km
Entire thickness ~ 5000 m
Possible Storage Formations:
1) Rhät Sandstone
2) middle Bunter Sandstone
(Heese,2009)
6th Trondheim CCS Conference
14.-16.6.2011
8
Field site application
Simulation model
Entire thickness ~ 1500 m
Discretization: 65 x 111 x 23 cells
1800 m
Szenario:
• CO2 injection into the lower storage formation
over a period of 20 years (1 Mio tons per year)
• 70 years post-injective simulation
3300 m
6th Trondheim CCS Conference
14.-16.6.2011
9
Field site application
Geochemical modelling:
Characterisation of the storage rock and formation water
Mineral composition
Representative
radial model
100000
1000
100
10
A
no
rt
hi
te
A
lb
it e
ite
K
-fe
ld
sp
ar
Fo
rs
te
r
Fa
ya
lit
e
Q
ua
rt
z
te
A
nh
yd
rit
e
1
C
al
ci
mol/m³
10000
Brine composition
(Heese,2009)
Lithology
information
(Heese,2009)
6th Trondheim CCS Conference
14.-16.6.2011
10
Simulation results of the coupled code:
1) Pressure build up and phase propagation
Phase propagation after:
a) Injection start
Field site application
b) Injection stop
Simulation grid
(4 times exaggerated)
Pressure change after:
a) Injection start
Δ
[bar]
b) Injection stop
Δ
[bar]
6th Trondheim CCS Conference
14.-16.6.2011
11
Simulation results of the coupled code:
2) Geochemical modelling
Field site application
10 days
CO2 Saturation
CO2 Dissolution
20 years
90 years
6th Trondheim CCS Conference
14.-16.6.2011
12
Simulation results of the coupled code:
2) Geochemical modelling after 90 years
pH
Calcite
Field site application
Quartz
Porosity
6th Trondheim CCS Conference
14.-16.6.2011
13
Further Work
Next steps
Object MultiphaseFlow
Multi-Phase-Flow
•Increasing computation efficiency
 Multiphase flow
 Geochemistry
OGS-FEM
OpenGeoSys
•Mechanical feedback on multiphase
flow (OGSECLIPSE)
DuMuX
OGS-FEM
Object Heat
Heat transport
Object Deformation
Elasto-(visko)-plastic
deform., strain, stress
time loop
•Further code verification
# chem. components times:
Object SoluteTransport
conservative transport of a species
(advection, dispersion, diffusion)
Object React
Kinetic and equilibrium
geochemistry
Kinetic Reactions
OGS
Equilib. Reactions
ChemApp
parameter
parameter
•More large scale applications
 Geochemistry
Feedback: Modified Porosity & Permeability
Interface
Interface
ECLIPSE-E100
ECLIPSE-E300
parameter
6th Trondheim CCS Conference
SUPCRT92
Thermodynamic
Databases
FactSage, HKF,
Phreeqc, …
14.-16.6.2011
14
This study is funded by the German Federal Ministry of Education and Research (BMBF), EnBW
Energie Baden-Württemberg AG, E.ON Energie AG, E.ON Gas Storage AG, RWE Dea AG, Vattenfall
Europe Technology Research GmbH, Wintershall Holding AG and Stadtwerke Kiel AG as part of the
CO2-MoPa joint project in the framework of the Special Programme GEOTECHNOLOGIEN.
Field site application
Greetings from Kiel
6th Trondheim CCS Conference
14.-16.6.2011
15