Katharina Benisch, Bastian Graupner, Dedong Li, Christof Beyer, Addisalem Mitiku, Sebastian Bauer Institute of Geosciences, University of Kiel, Contact: [email protected] 6th Trondheim Carbon Capture and Storage Conference 14.-16.6.2011 Motivation Simulation of CO2 injection THMC modelling system Heat transport Thermal Geomechanic Deformation Hydraulic Geochemistry Fluid dynamics Transport und Reactions 6th Trondheim CCS Conference 14.-16.6.2011 2 Codes = Scientific open-source code development for coupled Thermo-HydroMechanical-Chemical (THMC) systems in the environment Object-oriented programming Using Finite-Element-Method Schlumberger ©ECLIPSE • widely used multiphase simulator • Finite-Difference-Method • CO2Store option Benefits of the OpenGeoSys-ECLIPSE coupling: • benefit from the fast computation time of ECLIPSE • Extend the capabilites of the ECLIPSE simulator for modelling CO2 injection regarding Geochemistry and Geomechanics • Using already existing fluid flow models build in ECLIPSE 6th Trondheim CCS Conference 14.-16.6.2011 3 Implementation of the coupled code Object MultiphaseFlow Multi-Phase-Flow OGS-FEM OpenGeoSys Interface DuMuX OGS-FEM Object Heat Heat transport Object Deformation Elasto-(visko)-plastic deform., strain, stress time loop # chem. components times: Object SoluteTransport conservative transport of a species (advection, dispersion, diffusion) Object React Kinetic and equilibrium geochemistry OGS Equilib. Reactions ChemApp parameter parameter Kinetic Reactions parameter ECLIPSE Interface ECLIPSE-E100 ECLIPSE-E300 SUPCRT92 Feedback: Modified Porosity & Permeability OGS work frame Pα Sα qα CO2, sol ne K ρα Ppor OGS Thermodynamic Databases FactSage, HKF, Phreeqc, … 6th Trondheim CCS Conference 14.-16.6.2011 4 Benchmarking Benchmark 1: 2D Tracer Transport in a 1Phase radial flow field (after Moench and Ogata,1981) Good agreement of the coupled ECLIPSE-GeoSys code with the analytical solution. Differences between the tracer fronts result from different mathematical methods which are used within the codes. 6th Trondheim CCS Conference 14.-16.6.2011 5 Benchmarking Benchmark 2: Advective-dominated two phase flow in a homogeneous system (after Buckley and Leverett, 1942) (Paul, 2003) t1 t2 t3 Linear kr-Sw-function and pc-Sw-function GeoSys: PP formulation ECLIPSE: PS formulation 6th Trondheim CCS Conference 14.-16.6.2011 6 Benchmarking Benchmark 3: 3D multiphase flow field with CO2 injection Radial settings (injection left, boundary condition right) CO2 injection Adequate for model development and testing Breakthrough curves 6th Trondheim CCS Conference 14.-16.6.2011 7 Field site application Geological Model: Extend: 29 x 28 km Entire thickness ~ 5000 m Possible Storage Formations: 1) Rhät Sandstone 2) middle Bunter Sandstone (Heese,2009) 6th Trondheim CCS Conference 14.-16.6.2011 8 Field site application Simulation model Entire thickness ~ 1500 m Discretization: 65 x 111 x 23 cells 1800 m Szenario: • CO2 injection into the lower storage formation over a period of 20 years (1 Mio tons per year) • 70 years post-injective simulation 3300 m 6th Trondheim CCS Conference 14.-16.6.2011 9 Field site application Geochemical modelling: Characterisation of the storage rock and formation water Mineral composition Representative radial model 100000 1000 100 10 A no rt hi te A lb it e ite K -fe ld sp ar Fo rs te r Fa ya lit e Q ua rt z te A nh yd rit e 1 C al ci mol/m³ 10000 Brine composition (Heese,2009) Lithology information (Heese,2009) 6th Trondheim CCS Conference 14.-16.6.2011 10 Simulation results of the coupled code: 1) Pressure build up and phase propagation Phase propagation after: a) Injection start Field site application b) Injection stop Simulation grid (4 times exaggerated) Pressure change after: a) Injection start Δ [bar] b) Injection stop Δ [bar] 6th Trondheim CCS Conference 14.-16.6.2011 11 Simulation results of the coupled code: 2) Geochemical modelling Field site application 10 days CO2 Saturation CO2 Dissolution 20 years 90 years 6th Trondheim CCS Conference 14.-16.6.2011 12 Simulation results of the coupled code: 2) Geochemical modelling after 90 years pH Calcite Field site application Quartz Porosity 6th Trondheim CCS Conference 14.-16.6.2011 13 Further Work Next steps Object MultiphaseFlow Multi-Phase-Flow •Increasing computation efficiency Multiphase flow Geochemistry OGS-FEM OpenGeoSys •Mechanical feedback on multiphase flow (OGSECLIPSE) DuMuX OGS-FEM Object Heat Heat transport Object Deformation Elasto-(visko)-plastic deform., strain, stress time loop •Further code verification # chem. components times: Object SoluteTransport conservative transport of a species (advection, dispersion, diffusion) Object React Kinetic and equilibrium geochemistry Kinetic Reactions OGS Equilib. Reactions ChemApp parameter parameter •More large scale applications Geochemistry Feedback: Modified Porosity & Permeability Interface Interface ECLIPSE-E100 ECLIPSE-E300 parameter 6th Trondheim CCS Conference SUPCRT92 Thermodynamic Databases FactSage, HKF, Phreeqc, … 14.-16.6.2011 14 This study is funded by the German Federal Ministry of Education and Research (BMBF), EnBW Energie Baden-Württemberg AG, E.ON Energie AG, E.ON Gas Storage AG, RWE Dea AG, Vattenfall Europe Technology Research GmbH, Wintershall Holding AG and Stadtwerke Kiel AG as part of the CO2-MoPa joint project in the framework of the Special Programme GEOTECHNOLOGIEN. Field site application Greetings from Kiel 6th Trondheim CCS Conference 14.-16.6.2011 15
© Copyright 2024 ExpyDoc