7/14/2014 Elicitation of broadly-reactive HA head antibodies to seasonal and pandemic viruses by COBRA vaccines Program Hypothesis Universal influenza vaccines can be rationally engineered to elicit broadly cross-neutralizing epitopes Second WHO Integrated Meeting on development and clinical trials of Influenza vaccines that induce broadly protective and long-lasting immune responses 5th – 7th May 2014 Geneva, Suisse Universal antigens can be used in pre-immune hosts to re-focus the immune response, preferentially recalling broadly neutralizing antibodies that provides breadth against multiple strains within a subtype Universal antigens can also be delivered with appropriate technologies to stimulate durable and long-lasting immunity Antigen Selection Adjuvant (Formulation) Production & Delivery System 1 VAC C I N E & G E N E T H E R AP Y I N S T I T UT E VAC C I N E & G E N E T H E R AP Y I N S T I T UT E HA as the Principal Component of a Universal Influenza Vaccine Immune-refocusing of HA to increase breadth HEAD: Identify head sequences which stimulate broadly neutralizing Abs Benefits: Anti-head response against receptor binding site potent and MOA of current vaccine Accepted surrogate marker (HAI) Influenza Vaccine Program Vaccines: A goal of influenza vaccine development is the elicitation of crossprotective immunity. It is currently impossible to predict which antigenic variants may emerge and therefore an ideal vaccine will elicit immunity to most potential variants. M1 100 µm Risks: Breadth may be narrower than anti-stem approaches Pandemic Influenza: H5N1, H7N9, H2N2 Seasonal Influenza: H1N1, H3N2, and B STEM: Promote immunogenicity of the known broadly neutralizing stem epitopes HA NA Benefits: Breadth may reach across groups of influenza Risks: Not as potent as anti-head, higher amount of functional antistem Abs needed Disease modulating? No surrogate marker identified Broadly-reactive HA immunogens Broadly-reactive HA immunogens/ Universal influenza platforms 4 VAC C I N E & G E N E T H E R AP Y I N S T I T UT E VAC C I N E & G E N E T H E R AP Y I N S T I T UT E 1 7/14/2014 H5N1 Background • Initially emerged in poultry and humans in 1997 • Diversity within subtype Total Clade Distribution – 10 phylogenetic clades – Geographically distinct 0 – Human infections from 1 clades 0, 1, 2 and 7 2 Antigen Design • Computationally Optimized Broadly Reactive Antigen (COBRA) – Align amino acid sequences from Clade 2 human isolates – Assemble ‘Layered’ Consensus – Limit sampling bias • Confirm presence of conserved linear epitopes 0 1 2 3 4 5 6 7 8 9 – (Immune epitope database; www.immuneepitope.org) Giles et al. 2012. J. Inf. Dis. 205(10):1562-70. Giles et al. 2012. Clin Vacc Immunol. 19(2):128-39. Giles et al.. 2011. J. Virol. 86:1500-1513. Giles BM and Ross TM. 2011. Vaccine. 29:3043-54. 5 Giles and Ross. 2011. Vaccine. 29:3043-54 6 VAC C I N E & G E N E T H E R AP Y I N S T I T UT E VAC C I N E & G E N E T H E R AP Y I N S T I T UT E Mouse Antibody Responses NHP Immunogenicity Breadth (HAI) COBRA VLP Whooper Swan Clade 2.2 VLP Mock (Alum Only) Receptor Blocking Antibody (HAI Titers) 0 1 *** 9 HAI GMT (Log2) 2.2 2.1 10 *** *** * 8 * 7 2.3 ** ** * *** p<0.001 ** p<0.01 * p<0.05 4 7 *** * ** *** * *** 6 5 4 V V B C 8-12 week BALB/c 3ug HA + Alum C 6 la de 5 C 3 C 0 0 (H K /4 83 la /9 de 7) la 1 ( de H K 1 /2 (V 13 N C /1 /03 la 20 ) de 3/ 04 C 2.1 ) la .1 de ( D 2. k/ 1. H 3 U/ C 0 ( I la N 2) d /0 5/ C e2 la 05 de .2. ) 1 2 ( C .2. Eg /3 la 1 de (E 21 g C 2.2 /3 /07 3 la ) de .2 00 ( 2 Tk /08 C .2.2 /EG ) l C ade (T /0 la k 7 de 2. /T ) 2 k 2. .2 /0 2. (W 5) 2 C (B S/ la H 05 de G ) / 2 1/ C la .3. 05 ) C de 2 (C la 2 de .3 MP . 2. 2 ( / H 3. B K 4 u /0 C (J z/B 7) la de WE ul/ 1 2. /10 0) 3. 3 4 8/ (A 06 C N ) la /1 de /0 5) 4 (G s/ 11 75 C la /0 de 6) 7 (C k/ V N C /0 la 8) de 2. 0 C O B R A 3 Virus Giles et al. 2012. Clin Vaccine Immunol.19:128-39. Giles and Ross. 2011. Vaccine. 29:3043-54 7 VAC C I N E & G E N E T H E R AP Y I N S T I T UT E 8 VAC C I N E & G E N E T H E R AP Y I N S T I T UT E 2 7/14/2014 Part I: COBRA 1st Generation Second Generation H5N1 COBRA Vaccines Hemagglutinin Structure 0 V 3 V 5 • 6 • • B C Day 3 post-infection • Challenged with A/Whooper Swan/Mongolia/244/2005; Clade 2.2. Giles et al. 2012. J. Inf. Dis. 205(10):1562-70. 5-10% diversity between clades COBRA diversity 1.5% Receptor binding antibody (similar yet different) Can we utilize empirical data and sequence information to structurally design antigens for increased breadth and viral coverage? Human COBRA-2 Human/Avian COBRA-2 All H5 COBRA Globular Head (HA1) Stem (HA2) Site A Site B Site C Site D Site E Crevar et al. Manuscript in progress. 9 VAC C I N E & G E N E T H E R AP Y I N S T I T UT E H5N1 COBRA Summary Ferret Experiments using human/avian H5N1 COBRA-2 and All H5N1 COBRA vaccines Second Generation H5N1 COBRA • An HA head-based approach has potential to replace SOC Ferret Immunogenicity Breadth of HAI Hemagglutination Inhibition Titers to H5N1 10 * Log 2 HAI Titer 9 8 * * ** * 7 6 * * * Human COBRA-2 Human-Avian COBRA-2 All H5 COBRA Whooper Swan ** * * * * * 5 * p<0.05 C C la d la C de la 1. de 1 1 (C (V am N /V /12 08 03 e 2. Cla 13 /04 1. d 30 ) 3. e 2/ 2 2. 11 (IN 1. /N 3 (I IH N/ R 05 C D /0 la 1 de 94 5) 9/ 2 C .2 12 la ( ) de W 2. S/2 C 2 44 la ( T /0 C de k/ 5 la 2 Tk ) de .2 /0 .1 5) C 2.2 (E la .1 g de (E y/ 3 2. gy 21 C 2. /3 /0 la 1 3 7) de (H 00 ub /0 C 2.2 l a .1 ei 8) de . 1 /1 /1 2. (T 0 2. k/ 2 Is (B r/3 ng 62 C /3 /1 C la 23 1) C l d C la ade e 3/ l a de 2 2 . 11 de 2 .3 3. ) 2. .3. .4 4 (A 3. 2. (J N 2. 1 W /1 1 (E E /0 (D g /1 5 k/ y/N 03 ) V 8 0 N 2 /0 /L 0 6 B 38 M /1 C 14 0 la 0/ de 12 7 ) (C k/ V N /0 8) 4 V iral Strain VAC C I N E & G E N E T H E R AP Y I N S T I T UT E 10 VAC C I N E & G E N E T H E R AP Y I N S T I T UT E – Induces protection (vaccine efficacy) to a level comparable to SOC vaccines against WHO recommended strains, AND – Demonstrates breath of protection by providing consistent efficacy across types/subtypes against drifted/mismatched strains • New approaches for re-engineering HA have been demonstrated to increase breadth of neutralizing antibody response in pre-clinical studies – COBRA antigens increase breadth of Ab response over wild-type HA • Determining clinical POC in human translational studies is feasible – Progress into clinic with COBRA split-INV for POC – Assess whether or not COBRA antigens stimulate breath of immune response in humans as expected from pre-clinical animal model data VAC C I N E & G E N E T H E R AP Y I N S T I T UT E 3 7/14/2014 Acknowledgements • VGTI Florida Department of NeuroPathology Clayton Wiley Stephanie Bissel –Donald Carter –Corey Crevar –Greg Kirchenbaum –Terianne Wong –Chalise Bloom –Bradford Lefoley –Chris Darby –Neha Reddy –Kevin Lee –Rayleigh Chan New York University Elodie Ghedin Icahn Mt. Sinai School of Medicine Florian Krammer UPMC • University of Pittsburgh –Dilhari DeAlmeida –Kirsten Schneider-Orhum –Brendan Giles –Xian-Chun Tang –Brooke Pierce Shanta Zimmer Rick Zimmerman Kerry Empey Influenza Projects Supported by: NIH/NIAID NSF DoD PATH Vaccine Solutions Sanofi-Pasteur 13 VAC C I N E & G E N E T H E R AP Y I N S T I T UT E 4
© Copyright 2025 ExpyDoc