Chem142 – Introduction to Physical Chemistry Homework #1 September 4, 2014 due September 10, 2014 0.10. a) extensive b) intensive c) intensive d) intensive e) extensive Discussion 1.7. The van der Waals equation accounts for repulsive interactions between molecules by supposing that they cause the molecules to behave as small but impenetrable spheres. The nonzero volumes of the molecules implies that instead of moving in a volume V, they are restricted to a smaller volume V-nb, where b is proportional to the volume of a mole of molecules. This changes the ideal gas law to P = nRT / (V-nb). Attractive forces reduce the pressure of the gas and are proportional to the concentration of the gas squared (squared for pairs of molecules interacting). If the reduction in pressure is written as –a(n/V)2, where a is a positive constant nRT an 2 2 characteristic of each gas, the complete van der Waals equation is: P V nb V 1-1. N2 3.055g V=3.00 dm3=3.00 L T=32°C 1mol 3.055 g * 0.08206 L * atm / mol * K 305 K 28.014 g nRT 0.910atm P V 3.00 L 1-3. V=300 cm3 n PV RT T=14.5°C P=34.5 kPa 3 1atm 3 1dm 34.5kPa * 300.0cm * 101.325kPa 10cm 0.08206 L * atm / mol * K 287.5K 1-6. T1 = 18 °C P1 = 125 kPa T2 = 700 °C P2 = ? PV PV 1 1 2 2 T1 T2 P1 P2 T1 T2 (V is not changing) P 125kPa 2 291K 973K P2 418kPa 0.00433mol NO 1-9. T1 = 315 K increase V by 25% V2 = 1.25 * V1 PV PV 1 1 2 2 T1 T2 V1 V2 T1 T2 (P is not changing) 1.25V1 V1 315 K T2 T2 394 K 1-15. 320 mg CH4 175 mg Ar 225 mg N2 PN2 = 15.2 kPa T=300 K 1mol 0.0199mol 16.043 g 1mol 0.175 g * 0.00438mol 39.95 g 1mol 0.225 g * 0.00803mol 28.014 g 0.0199mol 0.00438mol 0.00803mol 0.0323mol nCH 4 0.320 g * nAr nN 2 ntotal PN2 xN2 Ptotal 0.00803mol 15.2kPa Ptotal 0.0323mol Ptotal 61.1kPa PtotalV ntotal RT V ntotal RT 0.0323mol 0.08206 L * atm / mol * K 300 K 1.32 L 1atm Ptotal 61.1kPa * 101.325kPa 1-17. d=1.23 g/dm3 T=330 K P=25.5 kPa PM dRT M dRT 1.23 g / L 0.08206 L * atm / mol * K 330 K 132.3g / mol 1atm P 25.5kPa * 101.325kPa 1-36. 1.0 mol C2H6 V=22.414 dm3 i) T = 273.15 K ideal gas P nRT 1.0mol 0.08206 L * atm / mol * K 273.15 K 1.00atm V 22.414 L VDW gas 2 2 nRT an 2 1.0mol 0.08206 L * atm / mol * K 273.15 K 5.507atm * L / mol 1.0mol P 2 0.992atm 2 V nb V 22.414 L 1.0mol 6.51*102 L / mol 22.414 L 2 3 i) T = 1000 K ideal gas P 1dm 3 V= 100cm3 * 0.100dm 10 cm nRT 1.0mol 0.08206 L * atm / mol * K 1000 K 821atm V 0.100 L VDW gas 2 2 nRT an 2 1.0mol 0.08206 L * atm / mol * K 1000 K 5.507atm * L / mol 1.0mol P 1801atm 2 V nb V 2 0.100 L 1.0mol 6.51*102 L / mol 0.100 L 2 1-37. 10.00 g CO2 V=100cm3 ideal gas T=25.0°C 1mol 10.00 g * 0.08206 L * atm / mol * K 298K 44.009 g nRT P 55.6atm V 0.100 L VDW gas 2 2 nRT an 2 0.227 mol 0.08206 L * atm / mol * K 298 K 3.610atm * L / mol 0.227 mol 2 42.9atm 2 V nb V 0.100 L 0.227 mol 4.29 *10 2 L / mol 0.100 L 2 P difference = 55.6 atm – 42.9 atm = 12.7 atm 12.7atm *100% 29.6% % difference = 42.9atm Pvdw < Pideal implies that attractive molecular forces are significant at these conditions. Discussion 2.6. The general expression for work is w Pext dV When the expansion work is against a constant external pressure, the expression becomes w Pext V When the expansion work is reversible, P = Pext. In the case of a reversible isothermal expansion of an ideal gas, the Vf expression becomes w nRT ln . Vi These examples demonstrate that work depends upon the particulars (i.e., the path) of the process. Work is not a state function. Care must be taken to select or derive the work relation that is applicable to a particular process. 2-1. a) expand 1.0 cm3 against P = 100 kPa w Pext V 3 3 1m 100 *10 Pa 1.0cm * 100cm 0.1J To compress back, w = + 0.1 J 3 b) expand 1.0 dm3 against P = 100 kPa w Pext V 3 1m 100*103 Pa 1.0dm3 * 10dm 100 J To compress back, w = + 100 J 2-3. 4.50 g CH4 V=12.7 dm3 T=310 K a) isothermal expansion against constant external P = 30.0 kPa V 3.3dm3 3 1m w Pext V 30.0 *103 Pa 3.3dm3 * 99 J 10dm b) isothermal and reversible Vf w nRT ln Vi 1mol 12.7 dm3 3.3dm3 4.50 g * 8.314 J / K * mol 310 K ln 16.043g 12.7 dm3 167 J 2-7. 10.0 g C12H22O11 T=20.0 °C Pext = 1.20 atm a) C12H22O11(s) + 12O2(g) → 12CO2(g) + 11H2O(l) Δng = 0 for the reaction ΔV = 0 w = -PextΔV = 0 b) C12H22O11(s) + 12O2(g) → 12CO2(g) + 11H2O(g) 10.0 g C12 H 22 O11 * 1mol C12 H 22 O11 11mol H 2 O * 0.321mol H 2 O 342.29 g C12 H 22 O11 1mol C12 H 22 O11 change in moles of gas = +0.321 mol nRT 0.321mol 0.08206 L * atm / mol * K 293.0 K 6.44 L P 1.20atm w Pext V 1.20atm 6.44 L 7.73L * atm 783 J V 2-15. n=1.00 mol T = 300 K expand reversibly, isothermally Vf = 30.0 dm3 Vi = 22 dm3 w nRT ln Vf Vi 1.00mol 8.314 J / K * mol 300 K ln 774 J U 0 since T 0 U q w q w 0 q w 774 J 30.0dm3 22dm3 4. The following diagram represents the P-V changes of a gas. Write an expression for the total work done. P1 P2 P P3 V1 V2 V wtotal = -P2(V2-V1) –P3(V3-V2) V3
© Copyright 2025 ExpyDoc