Atmospheric Dynamics: lecture 3 Moist convection Dew point temperature/lapse rate/LCL Equivalent potential temperature Conditional and potential instability Thermodynamic diagram CAPE Introduction to Python (Problem 1.11) problem 1.10 (sec. 1.18); problems in Boxes 1.6 & 1.7 + extra problems ([email protected]) (http://www.phys.uu.nl/~nvdelden/dynmeteorology.htm) Cumulus clouds and convective precipitation Parcel of air rises spontaneously due to hydrostatic instability Figure 1.27: (Espy, 1841) Section 1.15 & last week Vertical acceleration of an air parcel 2 d δz g dθ 0 2 Governed by: = − δ z ≡ −N δz 2 θ 0 dz dt Brunt Väisälä-frequency, N: € g dθ 0 N ≡ θ 0 dz 2 N is about 0.01-0.02 s-1 The solution: € If If € g dθ 0 <0 θ 0 dz g dθ 0 € 2 N = >0 θ 0 dz N2 = δz = exp(±iNt ) Exponential growth instability oscillation stability Radiosonde measurements De Bilt, 26 Sep. 2013, 12 UTC Launching a radiosonde at KNMI on 30 November 2012 Radiosonde measurements De Bilt, 26 Sep. 2013, 12 UTC θ Will an air parcel at the surface accelerate upwards spontaneously? Lifted condensation level (LCL) Figure 1.27: (Espy, 1841) LCL The air parcel will cool as it ascends. At some level it will become saturated. This level is the Lifted Condensation Level (LCL) Radiosonde measurements De Bilt, 26 Sep. 2013, 12 UTC θ Will it reach the LCL below this height, i.e. will clouds form? Lifted condensation level (LCL) Figure 1.27: (Espy, 1841) LCL The LCL can be determined with information of the dewpoint and the temperature at the surface… Dew point temperature =temperature of air if it were cooled to saturation at constant pressure Teten’s formula (based on Clausius Clapeyron equation): ⎧ ⎞⎫ ⎛ T [°C] (box 1.5) es = 611.2 exp⎨17.67⎜ ⎟⎬ ⎝T [°C]+ 243.5 ⎠⎭ ⎩ Substitute es=e and T=Td and “invert”: € ⎛ e ⎞ 243.5 ln⎜ ⎟ ⎝ 611.2 ⎠ Td [°C] = ⎛ e ⎞ 17.67 − ln⎜ ⎟ ⎝ 611.2 ⎠ Equations of state Dry air: pd = ρ d Rd T (ideal gases) Water vapour: e = ρv RvT ρv r= ρd € Water vapour mixing ratio: € ρv e Rd εe εe r= = = ≈ ρ d Rv pd pd p € € € Rd with ε ≡ Rv Finding the lifted condensation level Dew point lapse rate Substitute es=e and T=Td in the Clausius Clapeyron equation: de Le = dTd RvTd2 € rv p Previous slide: e ≈ ε € rv is constant (see problem 1.3)! de Lrv p ≈ dTd RvεTd2 de rv dp ≈ dTd ε dTd dTd RvTd2 Therefore: = dp Lp € € dTd ρgRvTd2 gRvTd2 gT With hydrostatic equation: =− ≈− ≈− d dz Lp LRd T Lε € € Finding the lifted condensation level Dew point lapse rate dTd gTd 10 × 285 -1 ≈− ≈− ≈ −0.0018 K m dz Lε 2.5 ×10 6 × 0.62 € g Γd ≡ cp dTd Γdew ≡ dz € Figure 1, Box 1.5 Derive this expression for the dry-adiabatic lapse rate Dew point lapse rate dTd gT ≡ Γdew ≈ − d dz Lε Extra problem (see box 1.6) € Figure 1, Box 1.5 When is dTd − ≡ Γdew > Γd ? dz Investigate the consequences for conditional instability, cloud formation, precipitation and global water cycle if this is indeed the case. Radiosonde measurements De Bilt, 26 Sep. 2013, 12 UTC θ Determine the lifted condensation level (LCL). Will clouds form? Radiosonde measurements De Bilt, 26 Sep. 2013, 12 UTC θ The lifting condensation level is found by solving: ⎞ ⎛ g ⎞ ⎞ ⎛ dT ⎛ dTd ⎞ ⎛ 1.8 Ts + ⎜ zLCL ⎟ = Tds + ⎜ zLCL ⎟ 16.0 − ⎜ zLCL ⎟ = 8.0 − ⎜ 3 zLCL ⎟ ⎝ dz ⎠ ⎝ dz ⎠ ⎝10 ⎠ ⎝ c p ⎠ zLCL = 1 km Convective clouds organized into “streets” Thursday 26 Sep. 2013 What happens above the LCL? If the air parcel continues its ascent after reaching the LCL, condensation of water vapour will occur, which will be accompanied by release of latent heat….. Section 1.16 Latent heat release in updraught The rate of heating due to condensation is dmv drs ? mJ = −L J ≈ −L dt dt rs is saturation mixing ratio L (=2.5×106 J kg-1) is the latent heat of condensation € € Section 1.16 Latent heat release in updraught The rate of heating due to condensation is mJ (m is mass of air parcel): dmv drs ? mJ = −L J = −L dt dt rs is saturation mixing ratio L (=2.5×106 J kg-1) is the latent heat of condensation € € Change in rs following the motion is primarily due to ascent: drs drs ≅w for w > 0; dt dz drs ≅ 0 for w ≤ 0. dt € Section 1.16 Conditional instability Assume that θ=θ0(z)+θ’, with θ’<<θ0. We have (eq 1.55), dθ dθ ' dθ J ≈ +w 0 = . dt dt dz Π { dθ ' −θ 0 2 = N w if w ≤ 0; dt g dθ ' −θ 0 ≈ N m2 w if w > 0, dt g € J=0 if w≤0 and J=-Lwdrs/dz if w>0 € only in the updraught! Latent heat release Section 1.16 Conditional instability Assume that θ=θ0(z)+θ’, with θ’<<θ0. We have (eq 1.55), { dθ dθ ' dθ J ≈ +w 0 = . dt dt dz Π dθ ' −θ 0 2 = N w if w ≤ 0; dt g dθ ' −θ 0 ≈ N m2 w if w > 0, dt g € J=0 if w≤0 and J=-Lwdrs/dz if w>0 € N m2 gL drs ≡N + , θ 0Π 0 dz 2 Nm is the "moist" Brunt Väisälä frequency € dθ ' > 0: positive buoyancy and upward acceleration If Nm<0 and w>0 then dt Section 1.16 Conditional instability Assume that θ=θ0(z)+θ’, with θ’<<θ0. We have (eq 1.55), dθ ' −θ 0 2 = N w if w ≤ 0; dθ dθ ' dθ 0 J dt g ≈ +w = . dt dt dz Π dθ ' −θ 0 ≈ N m2 w if w > 0, dt g { J=0 if w≤0 and J=-Lwdr€ s/dz if w>0 € N m2 gL drs ≡N + , θ 0Π 0 dz 2 Nm is the "moist" Brunt Väisälä frequency € In these circumstances the atmosphere is Frequently: Nm2 <0 and N2>0. statically or buoyantly unstable only with respect to saturated upward motion. This is called conditional instability. Section 1.16 Equivalent potential temperature Previous slide: N m2 gL drs ≡N + , θ 0Π 0 dz 2 Define a pseudo- or moist adiabatic process in which a “equivalent potential temperature”, θe, is constant. That is, θe € is constant following saturated ascent. Extra problem: Simply define: 2 Nm then € € g d (θ e )0 = (θ e )0 dz ⎛ Lrs ⎞ θ e ≈ θ exp⎜ ⎟ ⎝θΠ ⎠ Show that equivalent potential temperature is approximately conserved in saturated upward motion. cold and dry air Warm conveyor belt cold and dry air Warm conveyor belt Tropical cyclone “Nadine”: warm/moist core cold and dry air Cyclone with cold/dry core Section 1.16 Equivalent potential temperature ⎛ Lrs ⎞ θ e ≈ θ exp⎜ ⎟ ⎝θΠ ⎠ Equivalent potential temperature unsaturated air parcel: € actual mixing ratio ⎛ Lr ⎞ ⎛ Lr ⎞ θ e = θexp⎜ ⎟ ⎟ = θexp⎜ ⎝θΠ LCL ⎠ ⎝ c pTLCL ⎠ (LCL: lifting condensation level) € Potential Instability: θ De Bilt, 26 Sep. 2013, 12 UTC ∂θ e <0 ∂z θe € ∂θ <0 ∂z € Potential Instability (PI) up to 650 hPa (3600 m) € ∂θ e <0 ∂z Three-dimensional convection: open convection cells Special type of threedimensional flow! Narrow rings of clouds (upward motion) surrounding broad clear areas (downward motion) satellite image, 18 April 2001, 1245 UTC Precipitation pattern associated with open convection cells radar image, 18042001, 1245 UTC De Bilt, 12Z 18 Apr ‘01 Absolute instability: ∂θ <0 ∂z -----------------------------------------------------------------------------! PRES HGHT TEMP DWPT RELH MIXR DRCT SKNT THTA THTE THTV! hPa m C C % g/kg deg knot K K K ! -----------------------------------------------------------------------------! 1004.0 4 7.8 -0.2 57 3.77 350 16 280.6 291.3 281.3! 1000.0 36 7.2 -0.8 57 3.62 350 16 280.4 290.6 281.0! 987.0 143 5.2 -2.8 56 3.17 349 17 279.4 288.4 279.9! 925.0 668 0.0 -6.0 64 2.65 345 21 279.3 286.9 279.8! 903.0 860 -2.1 -5.4 78 2.84 346 22 279.1 287.2 279.6! 850.0 1338 -5.7 -10.7 68 2.00 350 23 280.2 286.0 280.5! 807.0 1742 -9.4 -13.3 73 1.70 355 25 280.4 285.5 280.7! 801.0 1800 -9.9 -13.7 74 1.67 354 25 280.5 285.4 280.8! 777.0 2034 -10.9 -25.9 28 0.60 348 25 281.9 283.8 282.0! 759.0 2214 -11.5 -31.5 17 0.36 344 25 283.1 284.3 283.2! 703.0 2796 -16.1 -36.1 16 0.25 331 25 284.3 285.1 284.3! 700.0 2828 -16.3 -32.3 24 0.37 330 25 284.4 285.6 284.5! 688.0 2958 -17.1 -22.1 65 0.95 327 25 284.9 287.9 285.1! 682.0 3024 -17.5 -25.5 50 0.71 325 24 285.2 287.4 285.3! 672.0 3135 -18.5 -26.5 49 0.66 323 24 285.3 287.4 285.4! 662.0 3246 -19.5 -26.1 56 0.69 320 23 285.3 287.6 285.5! 647.0 3417 -21.1 -25.6 67 0.74 320 23 285.4 287.8 285.6! 638.0 3520 -21.9 -24.7 78 0.81 321 24 285.7 288.3 285.8! 616.0 3778 -23.3 -33.3 39 0.38 321 24 286.9 288.2 287.0! 598.0 3995 -24.7 -32.7 47 0.41 322 24 287.8 289.1 287.8! 577.0 4255 -26.7 -37.7 35 0.26 322 24 288.4 289.3 288.4! 568.0 4368 -26.3 -50.3 9 0.07 323 24 290.1 290.4 290.2! 500.0 5280 -32.7 -51.7 13 0.07 325 25 293.1 293.4 293.1! € Problem Compute the height of the LCL. Is this level reached spontaneously? De Bilt, Absolute and Conditional Instability: 18 -----------------------------------------------------------------------------! April 2001 12 UTC PRES HGHT TEMP DWPT RELH MIXR DRCT SKNT THTA THTE THTV! hPa m C C % g/kg deg knot K K K ! -----------------------------------------------------------------------------! 1004.0 4 7.8 -0.2 57 3.77 350 16 280.6 291.3 281.3! 1000.0 36 7.2 -0.8 57 3.62 350 16 280.4 290.6 281.0! 987.0 143 5.2 -2.8 56 3.17 349 17 279.4 288.4 279.9! 925.0 668 0.0 -6.0 64 2.65 345 21 279.3 286.9 279.8! 903.0 860 -2.1 -5.4 78 2.84 346 22 279.1 287.2 279.6! 850.0 1338 -5.7 -10.7 68 2.00 350 23 280.2 286.0 280.5! 807.0 1742 -9.4 -13.3 73 1.70 355 25 280.4 285.5 280.7! 801.0 1800 -9.9 -13.7 74 1.67 354 25 280.5 285.4 280.8! 777.0 2034 -10.9 -25.9 28 0.60 348 25 281.9 283.8 282.0! 759.0 2214 -11.5 -31.5 17 0.36 344 25 283.1 284.3 283.2! 703.0 2796 -16.1 -36.1 16 0.25 331 25 284.3 285.1 284.3! 700.0 2828 -16.3 -32.3 24 0.37 330 25 284.4 285.6 284.5! 688.0 2958 -17.1 -22.1 65 0.95 327 25 284.9 287.9 285.1! 682.0 3024 -17.5 -25.5 50 0.71 325 24 285.2 287.4 285.3! 672.0 3135 -18.5 -26.5 49 0.66 323 24 285.3 287.4 285.4! 662.0 3246 -19.5 -26.1 56 0.69 320 23 285.3 287.6 285.5! e 647.0 3417 -21.1 -25.6 67 0.74 320 23 285.4 287.8 285.6! 638.0 3520 -21.9 -24.7 78 0.81 321 24 285.7 288.3 285.8! 616.0 3778 -23.3 -33.3 39 0.38 321 24 286.9 288.2 287.0! 598.0 3995 -24.7 -32.7 47 0.41 322 24 287.8 289.1 287.8! 577.0 4255 -26.7 -37.7 35 0.26 322 24 288.4 289.3 288.4! 568.0 4368 -26.3 -50.3 9 0.07 323 24 290.1 290.4 290.2! 500.0 5280 -32.7 -51.7 13 0.07 325 25 293.1 293.4 293.1! ∂θ <0 ∂z Absolute Instability (AI) up to 800 hPa € ∂θ <0 ∂z Conditional (potential) Instability up to 568 hPa € South America Manaus Station latitude: -3.15 Station longitude: -59.98 Station elevation: 84.0! 82332 SBMN Manaus (Aeroporto) Observations at 00Z 08 Oct 2004 ------------------------------------------------------! PRES HGHT TEMP DWPT RELH MIXR DRCT SKNT THTA THTE THTV hPa m C C % g/kg deg knot K K K ! ----------------------------------------------------------------------------1002.0 84 27.0 25.4 91 20.90 0 0 300.0 361.6 303.7 1000.0 101 27.0 25.8 93 21.47 0 0 300.1 363.5 304.0 935.0 693 22.2 21.8 98 17.94 65 3 301.1 354.1 304.3 925.0 787 22.2 21.4 95 17.69 75 3 302.0 354.4 305.2 911.6 914 21.6 20.3 92 16.74 75 6 302.6 352.4 305.7 850.0 1521 18.6 15.0 80 12.77 70 12 305.6 344.1 308.0 791.2 2134 15.9 11.3 74 10.77 100 12 309.1 342.1 311.1 789.0 2158 15.8 11.2 74 10.70 100 12 309.2 342.0 311.2 763.3 2438 13.6 11.0 84 10.89 100 12 309.8 343.2 311.8 736.0 2745 11.2 10.7 97 11.10 102 11 310.4 344.6 312.4 700.0 3164 9.4 7.7 89 9.51 105 9 312.9 342.6 314.6 657.0 3688 7.2 3.6 78 7.60 103 9 316.1 340.3 317.6 611.6 4267 3.5 0.9 83 6.75 100 10 318.4 340.2 319.7 541.0 5258 -2.7 -3.6 94 5.45 54 8 322.3 340.4 323.4 500.0 5880 -5.7 -6.4 95 4.77 25 6 326.0 342.1 327.0 486.5 6096 -6.8 -7.5 95 4.51 25 6 327.2 342.5 328.1 481.0 6185 -7.3 -7.9 95 4.41 26 6 327.7 342.7 328.6 480.0 6201 -5.1 -5.6 96 5.28 26 6 330.6 348.6 331.6 476.0 6267 -7.3 -7.9 95 4.46 26 6 328.7 343.9 329.6 400.0 7610 -15.3 -19.5 70 2.05 35 3 335.0 342.5 335.4 367.6 8230 -19.5 -24.6 64 1.43 335 5 337.6 342.9 337.9 300.0 9720 -29.7 -36.7 51 0.55 215 4 343.4 345.6 343.5 281.0 10182 -32.5 -38.5 55 0.49 219 5 345.9 347.9 346.0 250.0 10990 -39.9 -47.9 42 0.20 225 6 346.6 347.5 346.6 200.0 12470 -53.3 -60.3 42 0.06 220 12 348.2 348.5 348.2 150.0 14260 -68.9 -75.9 36 0.01 265 12 351.2 351.2 351.2 126.0 15281 -77.3 -83.3 38 0.00 354.0 354.0 354.0 Manaus (Brazil) No absolute instability; Only potential instability!! How far up will a parcel at the ground have to rise to reach its lifting condensation level? Oct. 7 2100 UTC tropical Cu convection Layered clouds Forced lifting in the ITCZ M “Tephigram”: ⎛ pref ⎞R /c p θ = T ⎜ ⎟ p ⎝ ⎠ Explanation constant θ constant pressure constant θe ⎛ Lrs ⎞ θ e ≈ θ exp⎜ ⎟ ⎝θΠ ⎠ constant saturation mixing ratio R e rs = d s ? Rv p € isotherm € T € € Typical profiles in the tropics ⎛ pref ⎞R /c p θ = T ⎜ ⎟ ⎝ p ⎠ Dew point temperature temperature € € ⎛ Lrs ⎞ θ e ≈ θ exp⎜ ⎟ ⎝θΠ ⎠ Typical profiles in the midlatitude “summer” 18 April 2001 12 UTC ⎛ pref ⎞R /c p θ = T ⎜ ⎟ ⎝ p ⎠ Dew point temperature temperature € tropopause € ⎛ Lrs ⎞ θ e ≈ θ exp⎜ ⎟ ⎝θΠ ⎠ Tephigram Parcel of air is lifted from the ground. What “temperature-profile” does it follow? temperature LNB LNB=level of no buoyancy dew point temperature diluted parcel undiluted parcel LCL=lifted condensation level LCL 0°C Tephigram Close-up diluted parcel undiluted parcel Temperature (environment) Dew point temperature (environment) 700 hPa LCL 800 hPa dT/dz=9.8 K/km 900 hPa 1000 hPa dTd/dz=1.8 K/km 10°C 20°C 30°C Convective Available Potential Energy (CAPE) Force on air parcel: d 2z θ' F = m 2 ≈ mg ≡ mgB θ0 dt B = buoyancy B ≡ θ' θ0 Assuming a stationary state and horizontal € homogeneity we can write: dw dw ≈w = Bg. dt dz or wdw = Bgdz. Convective Available Potential Energy (CAPE) wdw = Bgdz. A parcel starting its ascent at a level z1 with vertical velocity w1, will have a velocity w€2 at a height z2 given by w 22 = w12 + 2 × CAPE, z2 CAPE ≡ g ∫ Bdz. z1 € € De Bilt, 12Z 18 Apr ‘01 Potential Instability: ∂θ e <0 ∂z -----------------------------------------------------------------------------! PRES HGHT TEMP DWPT RELH MIXR DRCT SKNT THTA THTE THTV! hPa m C C % g/kg deg knot K K K ! -----------------------------------------------------------------------------! 1004.0 4 7.8 -0.2 57 3.77 350 16 280.6 291.3 281.3! 1000.0 36 7.2 -0.8 57 3.62 350 16 280.4 290.6 281.0! 987.0 143 5.2 -2.8 56 3.17 349 17 279.4 288.4 279.9! 925.0 668 0.0 -6.0 64 2.65 345 21 279.3 286.9 279.8! 903.0 860 -2.1 -5.4 78 2.84 346 22 279.1 287.2 279.6! 850.0 1338 -5.7 -10.7 68 2.00 350 23 280.2 286.0 280.5! 807.0 1742 -9.4 -13.3 73 1.70 355 25 280.4 285.5 280.7! 801.0 1800 -9.9 -13.7 74 1.67 354 25 280.5 285.4 280.8! 777.0 2034 -10.9 -25.9 28 0.60 348 25 281.9 283.8 282.0! 759.0 2214 -11.5 -31.5 17 0.36 344 25 283.1 284.3 283.2! 703.0 2796 -16.1 -36.1 16 0.25 331 25 284.3 285.1 284.3! 700.0 2828 -16.3 -32.3 24 0.37 330 25 284.4 285.6 284.5! 688.0 2958 -17.1 -22.1 65 0.95 327 25 284.9 287.9 285.1! 2 -2 682.0 3024 -17.5 -25.5 50 0.71 325 24 285.2 287.4 285.3! 672.0 3135 -18.5 -26.5 49 0.66 323 24 285.3 287.4 285.4! -1 662.0 3246 -19.5 -26.1 0.69 320 23 285.3 287.6 285.5! 256 647.0 3417 -21.1 -25.6 67 0.74 320 23 285.4 287.8 285.6! 638.0 3520 -21.9 -24.7 78 0.81 321 24 285.7 288.3 285.8! 616.0 3778 -23.3 -33.3 39 0.38 321 24 286.9 288.2 287.0! 598.0 3995 -24.7 -32.7 47 0.41 322 24 287.8 289.1 287.8! 577.0 4255 -26.7 -37.7 35 0.26 322 24 288.4 289.3 288.4! 568.0 4368 -26.3 -50.3 9 0.07 323 24 290.1 290.4 290.2! 500.0 5280 -32.7 -51.7 13 0.07 325 25 293.1 293.4 293.1! € CAPE=15 J/kg If CAPE=15 m s w =5.5 m s Potential Instability (PI) up to 568 hPa 82332 SBMN Manaus (Aeroporto) Observations at 00Z 08 Oct 2004 ------------------------------------------------------! PRES HGHT TEMP DWPT RELH MIXR DRCT SKNT THTA THTE THTV hPa m C C % g/kg deg knot K K K ! ----------------------------------------------------------------------------1002.0 84 27.0 25.4 91 20.90 0 0 300.0 361.6 303.7 1000.0 101 27.0 25.8 93 21.47 0 0 300.1 363.5 304.0 935.0 693 22.2 21.8 98 17.94 65 3 301.1 354.1 304.3 925.0 787 22.2 21.4 95 17.69 75 3 302.0 354.4 305.2 911.6 914 21.6 20.3 92 16.74 75 6 302.6 352.4 305.7 850.0 1521 18.6 15.0 80 12.77 70 12 305.6 344.1 308.0 791.2 2134 15.9 11.3 74 10.77 100 12 309.1 342.1 311.1 789.0 2158 15.8 11.2 74 10.70 100 12 309.2 342.0 311.2 763.3 2438 13.6 11.0 84 10.89 100 12 309.8 343.2 311.8 736.0 2745 11.2 10.7 97 11.10 102 11 310.4 344.6 312.4 700.0 3164 9.4 7.7 89 9.51 105 9 312.9 342.6 314.6 657.0 3688 7.2 3.6 78 7.60 103 9 316.1 340.3 317.6 611.6 4267 3.5 0.9 83 6.75 100 10 318.4 340.2 319.7 541.0 5258 -2.7 -3.6 94 5.45 54 8 322.3 340.4 323.4 500.0 5880 -5.7 -6.4 95 4.77 25 6 326.0 342.1 327.0 486.5 6096 -6.8 -7.5 95 4.51 25 6 327.2 342.5 328.1 481.0 6185 -7.3 -7.9 95 4.41 26 6 327.7 342.7 328.6 2 -2 480.0 6201 -5.1 -5.6 96 5.28 26 6 330.6 348.6 331.6 476.0 6267 -7.3 -7.9 95 4.46 -1 26 6 328.7 343.9 329.6 400.0 7610 -15.3 -19.5 702 2.05 35 3 335.0 342.5 335.4 367.6 8230 -19.5 -24.6 64 1.43 335 5 337.6 342.9 337.9 300.0 9720 -29.7 -36.7 51 0.55 215 4 343.4 345.6 343.5 281.0 10182 -32.5 -38.5 55 0.49 219 5 345.9 347.9 346.0 250.0 10990 -39.9 -47.9 42 0.20 225 6 346.6 347.5 346.6 200.0 12470 -53.3 -60.3 42 0.06 220 12 348.2 348.5 348.2 150.0 14260 -68.9 -75.9 36 0.01 265 12 351.2 351.2 351.2 126.0 15281 -77.3 -83.3 38 0.00 354.0 354.0 354.0 Manaus (Brazil) CAPE=2839 J/kg If CAPE=2839 m s w =? m s Sounding Bordeaux Problem 1.10, p. 71 Spanish plume (warm and dry) Air parcels with high relative humidity must be forced to rise through the stable layer Surface weather map of 20 July 1992, 15 UTC. The position of a surface station is indicated by a square. The number inside the square indicates the cloudiness (in octas). Also indicated are the temperature (°C) (upper left), the dew point temperature (°C) (lower left) and the pressure (hPa-1000) (upper right). Also shown are sea level isobars drawn every 1 hPa (thick line corresponds to 1012 hPa), according an objective analysis scheme. The letters 'Za" indicate the position of Zaragoza. Arrows indicate the movement and sources of moisture for the thunderstorm. The confluence line is indicated by a "hooked" solid line Infrared Meteosat satellite image, 20 July 1992,19:30 UTC. Illustration of the outbreak of summer thunderstorms due to forced lifting of potentially unstable air in advance of a cold front over southwest Europe. Height, temperature and temperature advection at 850 hPa on 20 July 1992, 12 UTC. The height, labeled in units of m, and the temperature, labeled in units of °C, are shown in panel (a), while temperature advection , labeled in units of 10-4 K s-1, is shown in panel (b). Homework: Problem 1.10 Plot the data shown in table 1.2 in a tephigram (figure 1.30). Determine from the tephigram the lifting condensation level (LCL) of an air parcel at the ground. Determine the height of the LCL from the theory described in Box 1.5. Determine the equivalent potential temperature of the air parcel. Will this air parcel reach the LCL spontaneously? Once it has reached the LCL, over how large a vertical distance will it rise? Estimate this vertical distance from the tephigram and also by using the theory of Box 1.6. Verify the value of θe at the surface using eq. 1.78. Estimate the value of CAPE. Repeat this for the data in table 1.3. Next week: large scale circulation geostrophic balance, vorticity and potential vorticity 11:00-12:45: Room David de Wied Gebouw (DDW) 1.05 13:30-16:00: Room 165 BBG http://www.staff.science.uu.nl/~delde102/WeatherDiscussions.htm Next week • sections 1.19 to 1.24 and Boxes 1.7 and 1.8. (geostrophic balance and thermal wind balance: (in)stability, cyclones) • Problems 1.11, 1.12 and Box 1.7 First project: construct a numerical model of an inertial oscillation Solve this in the programming language Python Python programming language Python: www.python.org, E-book on the use of Python in atmospheric sciences: http://www.johnny-lin.com/pyintro/ Package for scientific computing in python (Numpy): http://www.numpy.org/ Package for plotting in python (Matplotlib): http://matplotlib.org/ This site is useful in demonstrating how to make plots and how to customize your plots: http://www.loria.fr/~rougier/teaching/matplotlib/ The Canopy Python distribution might now be an easy way to get to know python: https://www.enthought.com/products/canopy/ If you want to plot some figures that you want to use in latex the best way is to save your figure as a pdf using the plt.savefig command. That way the plot scales with the resolution so your figure will appear smooth in latex. You can use the pandas package (http://pandas.pydata.org/) to load text files, excel sheets and other databases easily into python and convert them to pandas dataframes. An easy way to load external data into python. Example: Problem 0.1 Python script of solution to problem 0.1
© Copyright 2024 ExpyDoc