Supplementary Material Supplemental Table S1: Variants associated with SIDS present in ESP European Americans Ethnicity and Amino Gene Variant sex of SIDS acid Minor Total victims allele alleles CAV3 c.40G>C c.216C>G p.V14L p.C72W c.233C>T p.T78M African Americans Minor allele All Black male - 0 15 8600 8600 14 3 Total Minor Total alleles allele alleles Minor/ Minor 4406 14 13006 0 4406 18 13006 0 8600 18 4406 56 13006 0 Genotype Minor/ Major/ Major Major 14 6489 18 6485 56 6447 Family history / cosegregation Functional data Combined in silico prediction - Gain of function( INa) - Benign Pathogenic - Gain of function (INa) Benign 38 3 8600 0 4406 3 13006 0 3 6500 - No effect Pathogenic (Van Norstrand et al., 2012) 14 0 8600 8600 0 11 4406 4406 14 11 13006 13006 0 0 14 11 6489 6492 Loss of function (INa) - Benign Benign (Van Norstrand et al., 2007) (Tester and Ackerman, 2005) - Pathogenic (Millat et al., 2009) No effect Loss of function (KATP) Gain of function (IKs) Loss of function (IKs) Gain of function (Ito) Loss of function (INa) Gain of function (INa) Gain of function (INa) Gain of function (INa) Gain of function (INa) Gain of function (INa) Gain of function (INa) Gain of function (INa) Gain of function (INa) Gain of function (INa) Gain of function (INa) Pathogenic Pathogenic (Johnson et al., 2003) (Arnestad et al., 2007) Benign (Tester and Ackerman, 2005) Pathogenic Benign Benign (Tester et al., 2011) (Arnestad et al., 2007) (Arnestad et al., 2007) (Tester and Ackerman, 2005) GJA1 c.814T>C p.S272P* GPD1L KCNE2 c.370A>G c.40G>A p.I124V p.V14I* c.442G>A p.R148W White male 16 8600 0 4406 16 13006 0 16 6487 c.2653G>A c.3470G>A p.R885C p.P1157L* White infant 1 0 8600 8536 0 1 4406 4322 1 1 13006 12858 0 0 1 1 6502 6428 Familial mutation: Father.Prolongated QTc. Asymptomatic. - c.1036G>A p.V346I Black female 0 8600 4 4406 4 13006 0 4 6499 - c.820A>G KCNQ1 c.1378G>A c.1799C>T p.I274V p.G460S p.T600M* White infant White infant Black female 1 1 0 8598 8598 8574 0 0 7 4402 4404 4380 1 1 7 13000 13002 12954 0 0 0 1 1 7 6499 6500 6470 SCN1B c.774G>A p.R214Q* White female 21 4474 2 2482 23 6956 0 23 3455 SCN4B c.617G>A c.647G>A c.2066G>A c.2074G>T c.3578G>A c.3911G>A c.5477G>A c.5851C>A c.6010A>G c.6016G>C c.784A>C c.1378G>A p.S206L p.S216L p.R689H p.Q692K* p.R1193Q p.T1304M p.R1826H p.V1951L p.F2004L p.P2006A p.T262P* p.G460S Black male White infant Black infant White female 2 white infants White infant White male White infant 3 white infants 2 white infants White female White female 2 11 1 2 11 4 1 5 26 13 2 0 8592 8432 8472 8480 8600 8468 8536 8394 8368 8364 8600 8600 0 1 0 0 0 1 1 19 2 1 0 1 4400 4090 4276 4276 4406 4176 4294 4158 4028 4012 4406 4406 2 12 1 2 11 5 2 24 28 14 2 1 12992 12522 12748 12756 13006 12644 12830 12552 12396 12376 13006 13006 0 0 0 0 0 0 0 0 1 0 0 0 2 12 1 2 11 5 2 24 26 14 2 1 6494 6249 6373 6376 6492 6317 6413 6252 6171 6174 6501 6502 - KCNH2 SCN5A SNTA1 (Cronk et al., 2007) (Arnestad et al., 2007) (Arnestad et al., 2007; Cronk et al., 2007) Black female White female + white infant White female Black female KCNJ8 References *classified as unknown/suspected pathogenicity Benign Pathogenic Pathogenic Benign Benign Benign Pathogenic Benign Benign Benign Benign Benign Pathogenic (Hu et al., 2012) (Tan et al., 2010) (Arnestad et al., 2007) (Plant et al., 2006) (Millat et al., 2009) (Arnestad et al., 2007) (Arnestad et al., 2007) (Ackerman et al., 2001) (Arnestad et al., 2007) (Arnestad et al., 2007) (Arnestad et al., 2007) (Cheng et al., 2009) Supplemental Table S2: Variants associated with SIDS not present in ESP Ethnicity and sex Gene Variant Amino acid Functional data of SIDS victims CAV3 c.236T>G p.L79R Black female Gain of function( INa) GJA1 c.124G>A p.E42K White male Loss of intercellular coupling c.247G>A p.E83K White male Loss of function ( INa) GPD1L c.817C>T p.R273C White male Loss of function ( INa) KCNH2 KCNE1 KCNJ8 KCNQ1 RYR2 SCN3B SCN5A c.301A>G p.K101E - - c.818G>A c.835G>A c.881G>T c.1764C>A c.2684C>T c.3118A>G c.59C>T c. del995_997GAA c.314A>T c.350C>T c.1793A>G p.R273Q p.V279M p.G294V p.N588K p.T895M* p.S1040G p.T20I p.E332del p.H105L p.P117L p.K598R* White infant White infant White male White infant Japanese infant White infant White female White male Female White infant Japanese infant Loss of function( IKr) No effect Gain of function( IKr) Gain and loss of function( IKr) Loss of function (KATP) No effect Loss of function ( IKs) No effect c.1876G>A p.G626S White male - c.13695C>A c.36800G>A p.S4565R p.R2267H White female Black female c.106G>A p.V36M White female c.161A>C c.1595T>G p.V54G p.F532C White male Japanese infant Gain of function (ICa) Gain of function (ICa) Both Gain- and Loss of function ( INa) Loss of function ( INa) No effect c.1700T>A p.L567Q White female Loss of function ( INa) c.2039G>A p.R680H Gain of function ( INa) c.2465G>A p.W822X White infant 2 white males (twins) Male White male White male Japanese infant Black infant Male White female c.2971_2972delinsTC p.S941N c.2933C>T p.R975W*† c.2989G>T p.A997S c.3250C>A p.G1084S* c.3319A>G p.E1107K c.3988G>C p.A1330P c.3998C>A p.S1333Y Family history / co-segregation References De novo mutation. Family history of SIDS Family history of unspecified cardiac arrhytmia. Familial mutation: Maternal uncle with TdP and prolonged QTc, Mother with marginally increased QTc interval and history of syncope Family history of SIDS and aborted SIDS Familial mutation. De novo mutation. Familial mutation: Mother - asymptomatic LQTS. - (Cronk et al., 2007) (Van Norstrand et al., 2012) (Van Norstrand et al., 2007) (Van Norstrand et al., 2007) (Christiansen et al., 2005) (Arnestad et al., 2007) (Arnestad et al., 2007; Rhodes et al., 2008) (Tester and Ackerman, 2005) (Brugada et al., 2004) (Otagiri et al., 2008) (Arnestad et al., 2007) (Millat et al., 2009) (Tester et al., 2011) (Wedekind et al., 2006) (Schwartz et al., 2001; Dahimène et al., 2006) (Ackerman et al., 2003; Sharma et al., 2004) (Otagiri et al., 2008) (Millat et al., 2009) (Tester et al., 2007) - (Tester et al., 2007) Familial mutation: co-segregates with Brugada syndrome of family members. Family history of SCD's - (Tan et al., 2010) (Otagiri et al., 2008) (Arnestad et al., 2007) Loss of function ( INa) No family history. (Turillazzi et al., 2008) Gain of function ( INa) No available data Gain of function ( INa) Loss of function ( INa) Gain of function ( INa) Gain of function ( INa) De novo mutation. No family history. De novo mutation. De novo mutation (Schwartz et al., 2000) (Millat et al., 2009) (Ackerman et al., 2001) (Otagiri et al., 2008) (Plant et al., 2006) (Wedekind et al., 2001) (Huang et al., 2009; Millat et al., 2009) (Priori et al., 2000) c.4456T>C p.F1486L White infant Gain of function ( INa) Familial mutation: Mother, brother, ant, c.4867C>T p.R1623X Female Loss of function ( INa) grandfather. All with normal ECGs. Family history of SIDS. c.5114T>C p.F1705S Japanese girl No effect c.166G>A p.P56S 3 black females No effect c.160C>G p.G54R* 1 hispanic female No effect SNTA1 c.861C>G p.S287R White female Gain of function (INa) c.1115C>T p.T372M 2 white males Gain of function (INa) *classified as unknown/suspected pathogenicity † have previously been found in other control populations (Arnestad et al., 2007) (Todd et al., 2005) (Otagiri et al., 2008) (Valdivia et al., 2002) (Cheng et al., 2009) (Cheng et al., 2009) (Cheng et al., 2009) Supplemental Table S3: Common polymorphisms associated with SIDS present in ESP European Americans Gene KCNE2 Variant Amino acid African Americans All Genotype Minor allele Total alleles Minor Total Minor Total allele alleles alelle alleles Functional data Minor/ Minor Minor/ Major Major/ Major Combined in silico prediction References c.25G>C p.Q9E 0 8600 73 4406 73 13006 0 73 6430 Loss of function Benign (Abbott et al., 1999; Arnestad et al., 2007) c.1571G>A p.S524Y 7 8382 135 4080 142 12462 5 132 6094 Loss of function (INa) Benign (Plant et al., 2006; Shuraih et al., 2007) c.3308C>A p.S1103Y 3 8448 304 4172 307 12620 9 289 6012 Gain of function (INa) Benign (Plant et al., 2006) SCN5A Supplemental Table S4: In silico predictions of the SIDS associated variants present in ESP. Alignment across Gene Amino acid Grantham score PolyPhen2 species p.V14L 32 Not Conserved Benign CAV3 p.C72W 215 Conserved Probably damaging p.T78M 81 Not Conserved Probably damaging GJA1 p.S272P* 74 Conserved Probably damaging GPD1L p.I124V 29 Conserved Benign KCNE2 p.V14I* 29 Not Conserved Benign p.R148W 101 Conserved Benign KCNH2 p.R885C 180 Conserved Probably damaging p.P1157L* 98 Conserved Possibly damaging KCNJ8 p.V346I 29 Conserved Benign p.I274V 29 Conserved Probably damaging KCNQ1 p.G460S 56 Not Conserved Benign p.T600M* 81 Conserved Possibly damaging SCN1B p.R214Q* 43 Not Conserved Benign SCN4B p.S206L 145 Conserved Probably damaging p.S216L 145 Conserved Probably damaging p.R689H 29 Not Conserved Benign p.Q692K* 53 Not Conserved Benign p.R1193Q 43 Not Conserved Benign SCN5A p.T1304M 81 Conserved Probably damaging p.R1826H 29 Conserved Possibly damaging p.V1951L 32 Not Conserved Benign p.F2004L 22 Not Conserved Benign p.P2006A 27 Not Conserved Benign p.T262P* 38 Not Conserved Benign SNTA1 p.G460S 56 Conserved Probably damaging SIFT Tolerated Tolerated Damaging Damaging Tolerated Tolerated Damaging Damaging Damaging Tolerated Damaging Tolerated Tolerated Tolerated Damaging Damaging Tolerated Tolerated Tolerated Damaging Tolerated Tolerated Tolerated Tolerated Damaging Damaging Combined in silico prediction† Benign Pathogenic Benign Pathogenic Benign Benign Pathogenic Pathogenic Pathogenic Benign Pathogenic Benign Benign Benign Pathogenic Pathogenic Benign Benign Benign Pathogenic Benign Benign Benign Benign Benign Pathogenic *classified as unknown/suspected pathogenicity †variants are classified as pathogenic if ≥3 of the in silico prediction toolspredicted pathogenicity or benign if <3 predicted pathogenicity. Grantham values ≥100 were defined as radical changes (pathogenic), and values < 100 as conservative (benign). Polyphen-2 predictions “Probably damaging” and “possibly damaging” were considered “damaging” (pathogenic). The degree of conservation across species was obtained from HGMD and all variants with ≥1 substitution were classified as not conserved/(benign). References Abbott, G.W., Sesti, F., Splawski, I., Buck, M.E., Lehmann, M.H., Timothy, K.W., Keating, M.T., Goldstein, S.A., 1999. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 97, 175–187. Ackerman, M.J., Siu, B.L., Sturner, W.Q., Tester, D.J., Valdivia, C.R., Makielski, J.C., Towbin, J.A., 2001. Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA 286, 2264–2269. Ackerman, M.J., Tester, D.J., Jones, G.S., Will, M.L., Burrow, C.R., Curran, M.E., 2003. Ethnic differences in cardiac potassium channel variants: implications for genetic susceptibility to sudden cardiac death and genetic testing for congenital long QT syndrome. Mayo Clin. Proc. 78, 1479–1487. Arnestad, M., Crotti, L., Rognum, T.O., Insolia, R., Pedrazzini, M., Ferrandi, C., Vege, A., Wang, D.W., Rhodes, T.E., George, A.L., Jr, Schwartz, P.J., 2007. Prevalence of long-QT syndrome gene variants in sudden infant death syndrome. Circulation 115, 361–367. Brugada, R., Hong, K., Dumaine, R., Cordeiro, J., Gaita, F., Borggrefe, M., Menendez, T.M., Brugada, J., Pollevick, G.D., Wolpert, C., Burashnikov, E., Matsuo, K., Wu, Y.S., Guerchicoff, A., Bianchi, F., Giustetto, C., Schimpf, R., Brugada, P., Antzelevitch, C., 2004. Sudden death associated with short-QT syndrome linked to mutations in HERG. Circulation 109, 30–35. Cheng, J., Van Norstrand, D.W., Medeiros-Domingo, A., Valdivia, C., Tan, B., Ye, B., Kroboth, S., Vatta, M., Tester, D.J., January, C.T., Makielski, J.C., Ackerman, M.J., 2009. Alpha1-syntrophin mutations identified in sudden infant death syndrome cause an increase in late cardiac sodium current. Circ Arrhythm Electrophysiol 2, 667–676. Christiansen, M., Tønder, N., Larsen, L.A., Andersen, P.S., Simonsen, H., Oyen, N., Kanters, J.K., Jacobsen, J.R., Fosdal, I., Wettrell, G., Kjeldsen, K., 2005. Mutations in the HERG K+-ion channel: a novel link between long QT syndrome and sudden infant death syndrome. Am. J. Cardiol. 95, 433–434. Cronk, L.B., Ye, B., Kaku, T., Tester, D.J., Vatta, M., Makielski, J.C., Ackerman, M.J., 2007. Novel mechanism for sudden infant death syndrome: persistent late sodium current secondary to mutations in caveolin-3. Heart Rhythm 4, 161–166. Dahimène, S., Alcoléa, S., Naud, P., Jourdon, P., Escande, D., Brasseur, R., Thomas, A., Baró, I., Mérot, J., 2006. The N-terminal juxtamembranous domain of KCNQ1 is critical for channel surface expression: implications in the Romano-Ward LQT1 syndrome. Circ. Res. 99, 1076–1083. Hu, D., Barajas-Martínez, H., Medeiros-Domingo, A., Crotti, L., Veltmann, C., Schimpf, R., Urrutia, J., Alday, A., Casis, O., Pfeiffer, R., Burashnikov, E., Caceres, G., Tester, D.J., Wolpert, C., Borggrefe, M., Schwartz, P., Ackerman, M.J., Antzelevitch, C., 2012. A novel rare variant in SCN1Bb linked to Brugada syndrome and SIDS by combined modulation of Na(v)1.5 and K(v)4.3 channel currents. Heart Rhythm 9, 760–769. Huang, H., Millat, G., Rodriguez-Lafrasse, C., Rousson, R., Kugener, B., Chevalier, P., Chahine, M., 2009. Biophysical characterization of a new SCN5A mutation S1333Y in a SIDS infant linked to long QT syndrome. FEBS Lett. 583, 890–896. Johnson, W.H., Jr, Yang, P., Yang, T., Lau, Y.R., Mostella, B.A., Wolff, D.J., Roden, D.M., Benson, D.W., 2003. Clinical, genetic, and biophysical characterization of a homozygous HERG mutation causing severe neonatal long QT syndrome. Pediatr. Res. 53, 744–748. Millat, G., Kugener, B., Chevalier, P., Chahine, M., Huang, H., Malicier, D., Rodriguez-Lafrasse, C., Rousson, R., 2009. Contribution of long-QT syndrome genetic variants in sudden infant death syndrome. Pediatr Cardiol 30, 502–509. Otagiri, T., Kijima, K., Osawa, M., Ishii, K., Makita, N., Matoba, R., Umetsu, K., Hayasaka, K., 2008. Cardiac ion channel gene mutations in sudden infant death syndrome. Pediatr. Res. 64, 482–487. Plant, L.D., Bowers, P.N., Liu, Q., Morgan, T., Zhang, T., State, M.W., Chen, W., Kittles, R.A., Goldstein, S.A.N., 2006. A common cardiac sodium channel variant associated with sudden infant death in African Americans, SCN5A S1103Y. J. Clin. Invest. 116, 430–435. Priori, S.G., Napolitano, C., Giordano, U., Collisani, G., Memmi, M., 2000. Brugada syndrome and sudden cardiac death in children. Lancet 355, 808–809. Rhodes, T.E., Abraham, R.L., Welch, R.C., Vanoye, C.G., Crotti, L., Arnestad, M., Insolia, R., Pedrazzini, M., Ferrandi, C., Vege, A., Rognum, T., Roden, D.M., Schwartz, P.J., George, A.L., Jr, 2008. Cardiac potassium channel dysfunction in sudden infant death syndrome. J. Mol. Cell. Cardiol. 44, 571–581. Schwartz, P.J., Priori, S.G., Bloise, R., Napolitano, C., Ronchetti, E., Piccinini, A., Goj, C., Breithardt, G., Schulze-Bahr, E., Wedekind, H., Nastoli, J., 2001. Molecular diagnosis in a child with sudden infant death syndrome. Lancet 358, 1342–1343. Schwartz, P.J., Priori, S.G., Dumaine, R., Napolitano, C., Antzelevitch, C., Stramba-Badiale, M., Richard, T.A., Berti, M.R., Bloise, R., 2000. A molecular link between the sudden infant death syndrome and the long-QT syndrome. N. Engl. J. Med. 343, 262–267. Sharma, D., Glatter, K.A., Timofeyev, V., Tuteja, D., Zhang, Z., Rodriguez, J., Tester, D.J., Low, R., Scheinman, M.M., Ackerman, M.J., Chiamvimonvat, N., 2004. Characterization of a KCNQ1/KVLQT1 polymorphism in Asian families with LQT2: implications for genetic testing. J. Mol. Cell. Cardiol. 37, 79–89. Shuraih, M., Ai, T., Vatta, M., Sohma, Y., Merkle, E.M., Taylor, E., Li, Z., Xi, Y., Razavi, M., Towbin, J.A., Cheng, J., 2007. A common SCN5A variant alters the responsiveness of human sodium channels to class I antiarrhythmic agents. J. Cardiovasc. Electrophysiol. 18, 434–440. Tan, B.-H., Pundi, K.N., Van Norstrand, D.W., Valdivia, C.R., Tester, D.J., Medeiros-Domingo, A., Makielski, J.C., Ackerman, M.J., 2010. Sudden infant death syndrome-associated mutations in the sodium channel beta subunits. Heart Rhythm 7, 771–778. Tester, D.J., Ackerman, M.J., 2005. Sudden infant death syndrome: how significant are the cardiac channelopathies? Cardiovasc. Res. 67, 388–396. Tester, D.J., Dura, M., Carturan, E., Reiken, S., Wronska, A., Marks, A.R., Ackerman, M.J., 2007. A mechanism for sudden infant death syndrome (SIDS): stress-induced leak via ryanodine receptors. Heart Rhythm 4, 733–739. Tester, D.J., Tan, B.-H., Medeiros-Domingo, A., Song, C., Makielski, J.C., Ackerman, M.J., 2011. Loss-of-Function Mutations in the KCNJ8-Encoded Kir6.1 KATP Channel and Sudden Infant Death SyndromeClinical Perspective. Circ Cardiovasc Genet 4, 510–515. Todd, S.J., Campbell, M.J., Roden, D.M., Kannankeril, P.J., 2005. Novel Brugada SCN5A mutation causing sudden death in children. Heart Rhythm 2, 540–543. Turillazzi, E., La Rocca, G., Anzalone, R., Corrao, S., Neri, M., Pomara, C., Riezzo, I., Karch, S.B., Fineschi, V., 2008. Heterozygous nonsense SCN5A mutation W822X explains a simultaneous sudden infant death syndrome. Virchows Arch. 453, 209–216. Valdivia, C.R., Ackerman, M.J., Tester, D.J., Wada, T., McCormack, J., Ye, B., Makielski, J.C., 2002. A novel SCN5A arrhythmia mutation, M1766L, with expression defect rescued by mexiletine. Cardiovasc. Res. 55, 279–289. Van Norstrand, D.W., Asimaki, A., Rubinos, C., Dolmatova, E., Srinivas, M., Tester, D.J., Saffitz, J.E., Duffy, H.S., Ackerman, M.J., 2012. Connexin43 mutation causes heterogeneous gap junction loss and sudden infant death. Circulation 125, 474–481. Van Norstrand, D.W., Valdivia, C.R., Tester, D.J., Ueda, K., London, B., Makielski, J.C., Ackerman, M.J., 2007. Molecular and functional characterization of novel glycerol-3phosphate dehydrogenase 1 like gene (GPD1-L) mutations in sudden infant death syndrome. Circulation 116, 2253–2259. Wedekind, H., Bajanowski, T., Friederich, P., Breithardt, G., Wülfing, T., Siebrands, C., Engeland, B., Mönnig, G., Haverkamp, W., Brinkmann, B., Schulze-Bahr, E., 2006. Sudden infant death syndrome and long QT syndrome: an epidemiological and genetic study. Int. J. Legal Med. 120, 129–137. Wedekind, H., Smits, J.P.P., Schulze-Bahr, E., Arnold, R., Veldkamp, M.W., Bajanowski, T., Borggrefe, M., Brinkmann, B., Warnecke, I., Funke, H., Bhuiyan, Z.A., Wilde, A.A.M., Breithardt, G., Haverkamp, W., 2001. De Novo Mutation in the SCN5A Gene Associated With Early Onset of Sudden Infant Death. Circulation 104, 1158–1164.
© Copyright 2025 ExpyDoc