CHAPTER 3: Stoichiometry I: Equations, the Mole, and Chemical Formulas 3.1 Chemical Equations C5H12 + O2 → H2O + CO2 reactants products Use subscripts (s), (l), (g), (aq) to indicate physical states Balancing Chemical Equations Al + H2SO4 → Al2(SO4)3 + H2 Be2C + H2O → Be(OH)2 + CH4 CH4 + Br2 → CBr4 + HBr Cl2 + NaI → NaCl + I2 CO + O2 → CO2 CO2 + KOH → K2CO3 + H2O Cu(NO3)2 → CuO + NO2 + O2 Fe2O3 + CO → Fe + CO2 Fe2O3 + CO → Fe3O4 + CO2 H2 + Br2 → HBr H2O2 → H2O + O2 HCl + CaCO3 → CaCl2 + H2O + CO2 K + H2O → KOH + H2 KClO3 → KCl + O2 KClO3 → KClO4 + KCl KNO3 → KNO2 + O2 KO2 + H2O + CO2 → KHCO3 + O2 Mg + O2 → MgO N2 + H2 → NH3 (NH4)2Cr2O7 → Cr2O3 + H2O + N2 N2H4 + N2O4 → N2 + H2O NaHCO3 → Na2CO3 + H2O + CO2 NH3 + CuO → Cu + N2 + H2O NH3 + O2 → N2 + H2O NH3 + O2 → NO + H2O NH4NO2 → N2 + H2O NH4NO3 → N2O + H2O O3 → O2 P4O10 + H2O → H3PO4 PbS + O2 → PbO + SO2 S + HNO3 → H2SO4 + NO2 + H2O S8 + O2 → SO2 XeF2 + H2O → Xe + HF + O2 Zn + AgCl → ZnCl2 + Ag Types of Chemical Reactions Combustion: reaction with oxygen C + O2 → CO2 CH4 + O2 → CO2 + H2O Fe + O2 → Fe2O3 C12H22O11 + O2 → CO2 + H2O Neutralization: reaction of acid and base to yield water and salt KOH + H3PO4 → K3PO4 + H2O NaOH + H2SO4 → Na2SO4 + H2O 3.2 The Mole Atomic Masses Atomic masses originally defined as relative masses based on H. Changed to O to improve 12 accuracy, and to C (1961). Masses can be determined accurately with a mass spectrometer. For atoms which exist as isotopes, the atomic mass given is the weighted average of the isotopoc masses. 12 C = 12 (by definition), 98.89% C = 13.00335, 1.11% To calculate weighted average, multiply each isotopic mass by its relative abundance. C = (12.00000)(0.9889) + (13.00335)(0.0111) = 11.86680 + 0.14434=12.01114 however, relative abundance is only accurate to 4 significant figures, so the atomic mass of C is given as 12.01 13 6 Li = 6.01512, 7.42% Li = 7.01600, 92.58% Li = (6.01512)(0.0742) + (7.01600)(0.9258) = 6.942 7 The Mole A mole is a way to count atoms 1 mole = large number of atoms since atoms are too small to count, we must count them indirectly by weighing then, so we define the mole in terms of mass 1 mole = number of atoms in 12 g of 12 C 12 Because 12 is the atomic mass of C, and the atomic mass scale is a relative scale, any time you have a mass in grams equal to the atomic mass of an element, you have one mole of the element. 23 1 mole = 6.02214 x 10 23 atoms = atomic mass in grams for Fe, 1 mole Fe = 6.022 x 10 atoms Fe = 55.85 g Fe 1 mole Fe 10.00 g Fe x 55.85 g Fe = 0.1791 mol Fe 55.85 g Fe 17.50 mol Fe x 1 mol Fe = 977.4 g Fe 23 6.02214 x 10 atoms Fe 22 =1.078 x 10 atoms Fe 1.000 g Fe x 55.85 g Fe Molecular Weight molecular mass = sum of masses of all atoms in molecule for C2H6, molecular mass = 2(12.01 amu) + 6(1.008 amu) = 30.07 amu 23 1 mol C2H6 = 6.022 x 10 molecules C2H6 = 30.07 g C2H6 molar mass - mass in grams of one mole of a substance 1 mol C2H6 10.00 g C2H6 x 30.07 g C H = 0.3324 mol C2H6 2 6 23 6.022 x 10 molecules C2H6 23 = 2.002 x 10 molecules C2H6 30.07 g C2H6 6 H atoms 23 24 2.002 x 10 molecules C2H6 x 1 molecule C H = 1.201 x 10 H atoms 2 6 10.00 g C2H6 x 3.3 Empirical Formulas C2H4O2 C 2(12.01) = 24.02 H 4(1.008) = 4.032 O 2(16.00) = 32.00 60.05 24.02 %C = 60.05 x 100% = 40.00% 4.032 %H = 60.05 x 100% = 6.714% 32.00 %O = 60.05 x 100% = 53.29% Determining the Formula of a Compound 1 mol C 93.70% C x 12.01 g C = 7.80 mol C 1 mol H 6.30% H x 1.008 g H = 6.24 mol H reduce to a simple ratio 7.80 mol C 1.25 mol C 5 mol C = 1 mol H = 4 mol H 6.24 mol H empirical formula is C5H 4 empirical formula mass = 5(12.01) + 4(1.008) = 64.09 molecular mass (determined by experiment) = 128.18 molecular mass 128.18 = 64.09 = 2 so molecular formula = 2(empirical formula) = C10H8 formula mass Combustion Train Oxygen carbon dioxide water vapor out Oxygen in Sample H2O absorber [Mg(ClO4)2] CO2 absorber [NaOH] 10.000 g of a compound containing C, H, and O → 21.193 g CO2 and 3.253 g H2O 12.01 g C 21.193 g CO2 x 44.01 g CO = 5.783 g C 2 2.016 g H 3.253 g H2O x 18.016 g H2O = 0.364 g H 10.000 g compound - 5.783 g C - 0.364 g H = 3.853 g O 1 mol C 5.783 g C x 12.01 g C = 0.4815 mol C ÷ 0.361 = 1.33 mol C 1 mol H 0.364 g H x 1.008 g H = 0.361 mol H ÷ 0.361 = 1.00 mol H 1 mol O 3.853 g O x 16.00 g O = 0.2408 mol O ÷ 0.361 = 0.667 mol O multiply by 3 to convert fractions → C4H3O2 empirical formula mass = 83.06 from experiment, molecular mass = 166.13 so molecular formula = C8H6O4 3.4 Mass Relationships in Equations Ca3N2 + 6H2O → 3Ca(OH)2 + 2NH3 What mass of calcium hydroxide can be produced by the reaction of 100.00 g calcium nitride with excess water? 1) convert mass of calcium nitride to moles 100.00 g Ca3N2 x \f(148.26 g Ca3N2) = 0.6745 mol Ca3N2 2) convert moles of calcium nitride to moles of calcium hydroxide 3 mol Ca(OH)2 0.6745 mol Ca3N2 x 1 mol Ca3N2 = 2.024 mol Ca(OH)2 3) convert moles of calcium hydroxide to mass of calcium hydroxide 74.10 g Ca(OH)2 2.024 mol Ca(OH)2 x 1 mol Ca(OH)2 = 149.93 g Ca(OH)2 H2O + Cl2O → 2HOCl How many grams of Cl2O are required to make 15.000 g HOCl? 1 mol Cl2O 86.90 g Cl2O 1 mol HOCl 15.000 g HOCl x 52.46 g HOCl x 2 mol HOCl x 1 mol Cl O = 12.42 g Cl2O 2 3.5 Limiting Reactants Ca3(PO4)2 + 8C → Ca3P2 + 8CO What mass of Ca3P2 can be produced from 50.00 g Ca3(PO4)2 and 25.00 g C? 1 mol Ca3(PO4)2 50.00 g Ca3(PO4)2 x 310.18 g Ca (PO ) = 0.1612 mol Ca3(PO4)2 3 42 1 mol C 25.00 g C x 12.01 g C = 2.082 mol C 2.082 mol C 12.9 8 = 0.1612 mol Ca3(PO4)2 1 > 1 soC is in excess and Ca3(PO4)2 will run out first 1 mol Ca3P2 182.18 g Ca3P2 0.1612 mol Ca3(PO4)2 x 1 mol Ca (PO ) x 1 mol Ca P = 29.37 g Ca3P2 3 42 3 2 Zn + 2AgNO3 → 2Ag + Zn(NO3)2 What mass of Ag can be fromed from 3.22 g Zn and 4.35 g AgNO3? 1 mol Zn 3.22 g Zn x 65.39 g Zn = 0.0492 mol Zn 1 mol AgNO3 4.35 g AgNO3 x 169.9 g AgNO3 = 0.0256 mol AgNO3 Zn is in excess 2 mol Ag 107.9 g Ag 0.0256 mol AgNO3 x 2 mol AgNO x 1 mol Ag = 2.76 g Ag 3 4LiH + AlCl3 → LiAlH4 + 3LiCl What mass of LiAlH4 can be formed from 40.00 g LiH and 100.00 g AlCl3? 1 mol LiH 40.00 g LiH x 7.949 g LiH = 5.032 mol LiH 1 mol AlCl3 100.00 g AlCl3 x 133.33 g AlCl3 = 0.7500 mol AlCl3 6.7 5.032 mol LiH = 1 so LiH is in excess 0.7500 mol AlCl3 1 mol LiAlH4 37.95 g LiAlH4 0.7500 mol AlCl3 x 1 mol AlCl x 1 mol LiAlH = 28.46 g LiAlH4 3 4 Percent Yield actual yield percent yield = theoretical yield x 100% example: if 24.04 g LiAlH4 is actually obtained, 24.04 g % yield = 28.46 g x 100% = 84.5%
© Copyright 2025 ExpyDoc