On the decay of the inverse of matrices that are sum of Kronecker products V. Simoncini Dipartimento di Matematica, Universit`a di Bologna [email protected] Joint work with C. Canuto (Politecnico Torino) and M. Verani (Politecnico Milano) 1 The application. I Adaptive Legendre-Galerkin discretizations for PDEs: H01 Tensorized Babuska-Shen basis in Ω = (0, 1) × (0, 1): ηk (x1 , x2 ) = ηk1 (x1 )ηk2 (x2 ), k1 , k2 ≥ 2, k = (k1 , k2 ) {ηki }: ki -order Legendre polyn (1D BS basis) Stiffness matrix: (ηk , ηm )H 1 (Ω) = (ηk1 , ηm1 )H 1 (I) (ηk2 , ηm2 )L2 (I) +(ηk1 , ηm1 )L2 (I) (ηk2 , ηm2 )H 1 (I) 0 0 0 Kronecker structure: Sηp = Mp ⊗ Ip + Ip ⊗ Mp (max p polyn degree) Note: If higher order polynomial used, then Sηp simply expands (augmented Mp ) 2 The application. I Adaptive Legendre-Galerkin discretizations for PDEs: H01 Tensorized Babuska-Shen basis in Ω = (0, 1) × (0, 1): ηk (x1 , x2 ) = ηk1 (x1 )ηk2 (x2 ), k1 , k2 ≥ 2, k = (k1 , k2 ) {ηki }: ki -order Legendre polyn (1D BS basis) Stiffness matrix: (ηk , ηm )H 1 (Ω) = (ηk1 , ηm1 )H 1 (I) (ηk2 , ηm2 )L2 (I) +(ηk1 , ηm1 )L2 (I) (ηk2 , ηm2 )H 1 (I) 0 0 0 Kronecker structure: Sηp = Mp ⊗ Ip + Ip ⊗ Mp (max p polyn degree) Note: If higher order polynomial used, then Sηp simply expands (augmented Mp ) 3 The application. II Adaptive Legendre-Galerkin discretizations for PDEs: • Inner product: v= X kvk2H 1 = vˆT Sη vˆ vˆk ηk , 0 • (Full!) Orthonormalization: {Φk } orth basis, X v= v˜k Φk , kvk2H 1 = v˜T GT Sη (G˜ v ) = v˜T v˜ 0 with G = L−1 where Sη = LLT • (Cheap!) Quasi-orthonormalization: {Ψk } quasi-orth basis, X ˇ T Sη (G˜ ˇ v ) ≈ v˜T D˜ v= vˇk Ψk , kvk2H 1 = v˜T G v 0 ˇ very sparse version of G, G D diagonal ˇ exist? ...Analyze sparsity of S −1 Q: Does such a G η 4 The application. II Adaptive Legendre-Galerkin discretizations for PDEs: • Inner product: v= X kvk2H 1 = vˆT Sη vˆ vˆk ηk , 0 • (Full!) Orthonormalization: {Φk } orth basis, X v ) = v˜T v˜ v= v˜k Φk , kvk2H 1 = v˜T GT Sη (G˜ 0 with G = L−1 where Sη = LLT • (Cheap!) Quasi-orthonormalization: {Ψk } quasi-orth basis, X ˇ T Sη (G˜ ˇ v ) ≈ v˜T D˜ v v= vˇk Ψk , kvk2H 1 = v˜T G 0 ˇ very sparse version of G, G D diagonal ˇ exist? ...Analyze sparsity of S −1 Q: Does such a G η 5 The application. II Adaptive Legendre-Galerkin discretizations for PDEs: • Inner product: v= X kvk2H 1 = vˆT Sη vˆ vˆk ηk , 0 • (Full!) Orthonormalization: {Φk } orth basis, X v ) = v˜T v˜ v= v˜k Φk , kvk2H 1 = v˜T GT Sη (G˜ 0 with G = L−1 where Sη = LLT • (Cheap!) Quasi-orthonormalization: {Ψk } quasi-orth basis, X ˇ T Sη (G˜ ˇ v ) ≈ v˜T D˜ v v= vˇk Ψk , kvk2H 1 = v˜T G 0 ˇ very sparse version of G, G D diagonal ˇ exist? ...Analyze sparsity of S −1 Q: Does such a G η 6 The application. II Adaptive Legendre-Galerkin discretizations for PDEs: • Inner product: v= X kvk2H 1 = vˆT Sη vˆ vˆk ηk , 0 • (Full!) Orthonormalization: {Φk } orth basis, X v ) = v˜T v˜ v= v˜k Φk , kvk2H 1 = v˜T GT Sη (G˜ 0 with G = L−1 where Sη = LLT • (Cheap!) Quasi-orthonormalization: {Ψk } quasi-orth basis, X ˇ T Sη (G˜ ˇ v ) ≈ v˜T D˜ v v= vˇk Ψk , kvk2H 1 = v˜T G 0 ˇ very sparse version of G, G D diagonal ˇ exist? ...Analyze sparsity of S −1 Q: Does such a G η 7 The stiffness matrix S := M ⊗ In + In ⊗ M, with M symmetric and positive definite, banded with bandwidth b • Finite differences: M is second order operator in one space dimension (b = 1) ⇒ for instance, S: 2D Laplace operator • Legendre Spectral methods: M spd, nonconstant (b = 1) • ... More generally, Sg := M1 ⊗ In + In ⊗ M2 , with M1 6= M2 , banded, with not necessarily the same dimensions 8 The inverse of the 2D Laplace matrix on the unit square S := M ⊗ In + In ⊗ M, M = tridiag(−1, 2, −1) Sparsity pattern: 0 0 10 10 20 20 30 30 40 40 50 50 60 60 70 70 80 80 90 90 100 100 0 10 20 30 40 50 60 nz = 460 70 80 90 100 0 10 20 30 40 50 60 nz = 9380 S −1 Matrix S 9 70 80 90 100 The inverse of the 2D Laplace matrix on the unit square S := M ⊗ In + In ⊗ M, M = tridiag(−1, 2, −1) Sparsity pattern: 0 10 0.7 20 0.6 30 0.5 40 0.4 50 0.3 60 0.2 0.1 70 0 100 80 80 90 100 60 80 60 40 100 0 10 20 30 40 50 60 nz = 460 70 80 90 40 20 100 20 0 0 |(S −1 )ij | S 10 The exponential decay of the entries of S −1 The classical bound (Demko, Moss & Smith): If S spd is banded with bandwidth b, then |(S −1 )ij | ≤ γq |i−j| b where κ: condition number of S √ κ−1 q := √ <1 κ+1 γ := max{λmin (S) −1 √ (1 + κ)2 , γˆ }, and γˆ = 2λmax (S) (λmin (·), λmax (·) smallest and largest eigenvalues of the given symmetric matrix) Many contributions: Bebendorf, Hackbusch, Benzi, Boito, Razouk, Golub, Tuma, Concus, Meurant, Mastronardi, Ng, Tyrtyshnikov, Nabben, ... 11 The true decay 1 column 35 of S−1 0.9 0.7 0.8 0.6 0.7 magnitude 0.5 0.4 0.3 0.2 0.1 0.6 0.5 0.4 0.3 0 100 0.2 80 100 60 80 0.1 60 40 0 0 40 20 20 0 ... a very peculiar pattern 20 40 60 row index 0 ⇒ much higher sparsity 12 80 100 Where do the repeated peaks come from? For S = M ⊗ In + In ⊗ M ∈ Rn 2 ×n2 xt := (S −1 ):,t = S −1 et : ⇔ Solve : Sxt = et Let Xt ∈ Rn×n be such that xt = vec(Xt ) Et ∈ Rn×n be such that et = vec(Et ) Then Sxt = et ⇔ M X t + X t M = Et 13 Where do the repeated peaks come from? For S = M ⊗ In + In ⊗ M ∈ Rn 2 ×n2 xt := (S −1 ):,t = S −1 et : ⇔ Solve : Sxt = et Let Xt ∈ Rn×n be such that xt = vec(Xt ) Et ∈ Rn×n be such that et = vec(Et ) Then Sxt = et ⇔ M X t + X t M = Et 14 For S the 2D Laplace operator, t = 1, . . . , n2 t = 35, Sxt = et ⇔ 1 M X t + X t M = Et 0.7 0.6 0.8 0.5 0.6 0.4 0.3 0.4 0.2 0.2 0.1 0 10 0 10 8 10 6 6 4 2 0 0 matrix Et 6 4 2 2 0 10 8 4 4 2 8 6 8 and 0 matrix Xt Et has only one nonzero element Lexicographic order: (Et )ij , j = ⌊(t − 1)/n⌋ + 1, i = tn⌊(t − 1)/n⌋ 15 For S the 2D Laplace operator, t = 1, . . . , n2 t = 35, Sxt = et ⇔ 1 M X t + X t M = Et 0.7 0.6 0.8 0.5 0.6 0.4 0.3 0.4 0.2 0.2 0.1 0 10 0 10 8 10 6 6 4 2 0 0 matrix Et 6 4 2 2 0 10 8 4 4 2 8 6 8 and 0 matrix Xt Et has only one nonzero element Lexicographic order: (Et )ij , j = ⌊(t − 1)/n⌋ + 1, i = tn⌊(t − 1)/n⌋ 16 0.7 0.6 0.7 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.1 0.2 0 10 8 0.1 10 6 8 6 4 0 4 2 0 10 20 30 40 Left: Row of S −1 50 component 60 70 80 90 100 j 2 0 0 i Right: same row on the grid 17 0.7 0.6 0.7 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.1 0.2 0 10 8 0.1 10 6 8 6 4 0 4 2 0 10 20 30 40 Left: Row of S −1 50 component 60 70 80 90 100 j 2 0 0 i Right: same row on the grid 18 0.7 0.6 0.7 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.1 0.2 0 10 8 0.1 10 6 8 6 4 0 4 2 0 10 20 30 40 Left: Row of S −1 50 component 60 70 80 90 100 j 2 0 0 i Right: same row on the grid 19 0.7 0.6 0.7 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.1 0.2 0 10 8 0.1 10 6 8 6 4 0 4 2 0 10 20 30 40 Left: Row of S −1 50 component 60 70 80 90 100 j 2 0 0 i Right: same row on the grid 20 0.7 0.6 0.7 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.1 0.2 0 10 8 0.1 10 6 8 6 4 0 4 2 0 10 20 30 40 Left: Row of S −1 50 component 60 70 80 90 100 j 2 0 0 i Right: same row on the grid 21 0.7 0.6 0.7 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.1 0.2 0 10 8 0.1 10 6 8 6 4 0 4 2 0 10 20 30 40 Left: Row of S −1 50 component 60 70 80 90 100 j 2 0 0 i Right: same row on the grid 22 Resolving the entry indexing using M Xt + Xt M = Et (S −1 )k,t = (S −1 )ℓ+n(m−1),t = e⊤ ℓ Xt e m , ℓ, m ∈ {1, . . . , n} ⇒ All the elements of the t-th column, (S −1 ):,t , are obtained by varying m, ℓ ∈ {1, . . . , n} From the Lyapunov equation theory, Z ∞ 1 Xt = (ıωI + M )−1 Et (ıωI + M )−∗ dω 2π −∞ with Et = ei e⊤ j , j = ⌊(t − 1)/n⌋ + 1, i = t − n⌊(t − 1)/n⌋ Therefore, e⊤ ℓ Xt e m 1 = 2π Z ∞ −∞ −1 −∗ e⊤ ei e⊤ em dω ℓ (ıωI + M ) j (ıωI + M ) 23 Resolving the entry indexing using M Xt + Xt M = Et (S −1 )k,t = (S −1 )ℓ+n(m−1),t = e⊤ ℓ Xt e m , ℓ, m ∈ {1, . . . , n} ⇒ All the elements of the t-th column, (S −1 ):,t , are obtained by varying m, ℓ ∈ {1, . . . , n} From the Lyapunov equation theory, Z ∞ 1 Xt = (ıωI + M )−1 Et (ıωI + M )−∗ dω 2π −∞ with Et = ei ej⊤ , j = ⌊(t − 1)/n⌋ + 1, i = t − n⌊(t − 1)/n⌋ Therefore, e⊤ ℓ Xt e m 1 = 2π Z ∞ −∞ −1 −∗ e⊤ ei e⊤ em dω ℓ (ıωI + M ) j (ıωI + M ) 24 Qualitative bounds Let κ = λmax /λmin = cond(M ) i)Assume ℓ, i, m, j : ℓ 6= i, m 6= j. n2 := |ℓ − i| + |m − j| − 2 > 0 √ κ2 + 1 1 −1 √ . |(S )k,t | ≤ 2λmin n2 ii)Assume ℓ, i, m, j : ℓ = i or m = j. n1 := |ℓ − i| + |m − j| − 1 > 0 √ κ κ2 + 1 1 −1 √ . |(S )k,t | ≤ 2 n1 1 0.7 0.6 0.8 0.5 0.6 0.4 0.3 0.4 0.2 0.2 0.1 0 10 0 10 8 8 10 6 4 2 0 0 (i, j) 4 2 2 0 8 6 4 4 2 10 6 8 6 and 25 0 (ℓ, m) Examples. Symmetric positive definite matrix M = tridiag(−0.5, 2, −0.5) ∈ R10×10 1.4 −1 column id of S new estimate Demko etal 1.2 magnitude 1 0.8 0.6 0.4 0.2 0 0 20 40 60 row index 26 80 100 Examples. Legendre stiffness matrix (scaled to have peak equal to 1) M = tridiag(δk , γk , δk ) 1 column 35 of S−1 new estimate 0.9 γk = 0.8 magnitude 0.7 δk 0.6 k = 1, . . . , n, and −1 p (4k + 1) (4k − 1)(4k + 3) k = 1, . . . , n − 1 0.5 0.4 0.3 0.2 0.1 0 0 = 2 (4k − 3)(4k + 1) 20 40 60 80 100 row index 27 Connections to point-wise estimates for discrete Laplacian For the discrete Green function Gh on the discrete d-dimensional grid Rh , there exist constants h0 and C such that for h ≤ h0 , x, y ∈ Rh , C C log if d = 2 |x−y|+h Gh (x, y) ≤ C if d ≥ 3 d−2 (|x−y|+h) (Bramble & Thomee, ’69) Our estimate: entries depend on inverse square root of the distance! 28 Explored generalizations • M spd of bandwidth b > 1 • S = M1 ⊗ I + I ⊗ M2 , M1 6= M2 • M1 , M2 of different bandwidth • LLT = S, then L−1 (lower triang.) has same sparsity pattern references: C. Canuto, V. Simoncini and M. Verani, LAA, v.452, 2014. C. Canuto, V. Simoncini and M. Verani, Adaptive Legendre-Galerkin methods, in preparation, 2014. 29
© Copyright 2024 ExpyDoc