No. of Printed Pages : 8 BECE-015 BACHELOR'S DEGREE PROGRAMME (BDP) Term-End Examination ;-i w June, 2014 BECE-015 : ELEMENTARY MATHEMATICAL METHODS IN ECONOMICS Time : 3 hours Maximum Marks : 100 Note : Answer the questions as per the instructions given in each section. SECTION A . Answer any two questions from this section. 2x20=40 1. Maximise f - (t2 + u2) dt dy subject to — = u and y(0) = 4, y(T) = 5. dt Here y is a state variable. BECE-015 1 P.T.O. 2. Consider the following market model : Qdt = a — (a' > 0) t (Y'8 > 0) Qst = Y + 84P Pt-Fi = Pt — a (Qst Qdd (a > 0) denotes the stock-induced Here price-adjustment coefficient. Describe the time path of the price variable. 3. Consider a situation where a factory shuts down and 1200 people become unemployed and now begin a job search. Here we have two states : employed and unemployed, with an initial vector [E, U] = [0, 1200]. Suppose in any given period an unemployed person will find a job with probability 0-7. Also, persons who find themselves employed in any given period may lose their job with probability of 0-1. (i) Set up the Markov transition matrix for this problem. (ii) What will be the number of unemployed persons after 3 periods and after 5 periods ? (iii) What is the steady-state level of unemployment ? 4. Explain, with derivations, Roy's identity and Shephard's lemma. BECE-015 2 SECTION B Answer any three questions from this section. 3x12=36 5. A consumer has a utility function u = (x . y) where x and y are the goods consumed. The prices of the goods are px and p respectively and the consumer's income is M. Furthermore, the consumer has an allotment of coupons, denoted by C, which can be used to purchase either x or y at a coupon price of Cx and C. Set up the Lagrangian for this problem and write the Kuhn — Tucker conditions. 6. Solve the following game using backward induction : 1 A 7. 8. 9. B 2D C 1 2, 3 E 26 1,4 15 (A, B, C, D, E, F are the moves and 1 and 2 are the players) Discuss the method of dynamic programming as a technique to solve dynamic optimisation problems. Construct the average and marginal product functions for x1 which correspond to the production function q = x1x2 — 0.2 x 1— 0.8 x22 . Let x2 = 10. At what respective values of x1 will the average product and marginal product of x1 equal zero ? Given the Cobb — Douglas production function Q = A Ka LI/, show that a and 6 are the partial elasticities of output with respect to the capital and labour inputs. BECE-015 3 P.T.O. SECTION C Answer any three questions from this section. 3x8=24 10. Let output Q be a function of three inputs L, K, N and the production function be Q = A Ka Lb Nc. (a) Is this function homogeneous ? If so, of what degree ? (b) Find the share of product for input N, if it is paid by the amount of its marginal product. 11. (a) Given the marginal revenue function R'(q) = 28q — e0 3q. Find the total revenue function. (b) Assume that the rate of investment is described by the function I(t) = 12t13 and that K(0) = 25. Find the time path of capital stock K. 7 6 12. Find the inverse of the matrix 0 3 13. Use the Lagrange multiplier method to find the stationary values of z in the following : (a) z = xy, subject to x + 2y = 2 (b) z = 7 — y + x2, subject to x + y = 0 BECE-015 4 •.t.Tft.t.-015 Ottr:Cfr.) chl Minch 441 RR* ITNTI 2014 . :3 : mut ch llDic(iti idflgT animw-ii 31W : 100 37 f0 Pa:miff sgrj Tie : Nmigg cat's 3W eav / s3? Vg I T <via 4 f17-e - We 3fff e-OV 2x20=40 1. aTfir*Wr *P4R — (t2 + u) dt 0 *INTIM : dy = u 3 dt 3rar k:94- w y BECE-015 y(0) = 4, y(T) = 5. ?AI I 5 P.T.O. Gihlik Trr-drrrq 2.ci (.11 Qdt = a — PPt (a' caulk : > 0) Qst = — Y 8Pt (y, 8 > °) Pt+1 =Pt —a(Qst —Qdt)(a > ze a chici k-dict)---Ita. Trri*# I .P4-11 *r qui-i trrA7 I 3.3-T41:141 'TT It WA7 : zrft 7* Weft A. 1200 Tgq ),4411t w i l * R1T )\-1,11k 1,;mi •.4113TH: t ar-41:20 ' : Trit-ff afr{ — ci-d 31-rtf** Trfor [E, = [0, 1200]. 1:114 #1f77 f*Tfi 3T-4RT A mrkzil* 1 kic0 sAcbdi 0.7 t atIT -4-41. Trka- 0,46 * t4 Tar* 0.1 t aTrRk --q-rF () ITT -41:RZIT * fc#R Wr-*1 -4 (ii) 3 aretlzil f*-A. 31-4 r•1ATqerr WP-A (iii) 4. t ,31411 Tritd trzl. T2TTzit-3fd1T BECE-015 •111111 ad;) mtr ? lT Trrir*1 (tictii-Ich) 3 t eentsen *r-A-R 6 I ? tra .*r lausw 3x12=36 df- 007 / e R9v waT 3re- <via 4 A;--x tb-a4 u = (x . y)t 5. T 371.17 ""T ztri-J 5. HI1I L t I ATRIA Y aTrzi t py .u‘arr ztrit-th-r px 3 cr4-1 TOO C titsen TrraT ft -ucAwr TiKx3T2F4Ty(siq C Wall Cy VI.1 ticbdi rimiA xrq AtTiltd*P4R Ta viTm* (Ift fuR§R A TR' — dcrctvk 6. PHiCiRgo 3r4w4 (3417m9.) f4N. 1 0 02 B 1 0 F 2, 3 A 1, 5 1, 4 2, 6 A 1, 2 giki Mt A, B, C,D,E3 F TKT itur41. ch TR arlitft -Tur ti 34gfgrq 7. Trgrrarg tt cm-114)* (*EdiTicnkul) vtr w4i *PAR I * Ara. * 8. TEI• dc41c-1 1:Faq * k-a-littNR : dc-41c lzb-Fal #tf* x2 = 10. q = xix2 — 0.2 xi —0.8 x2. i,14 atErd Trrql xi 3c-414k•-0-1 9. ? *t4 —skit" 3c4Ic1 tb-Fq *C7R Q=AKa l" A. a A 13 stoiki:ft-Al- A WI •447i * BECE-015 dc4Ic-1 701 I 7 P.T.O. cT ua 4A7-e NM ri< 007. / 3x8=24 10. 1TR #11*3c l Q A19. alT791 TFO'q t I TOR't : aTT<TR. L, K 31 N tWaTT Q = A Ka Lb NC () 1 zrg Th—eq ? zfR e, z-frizt Tr ? (w) zrf 3T1-4T4 N *t.4 3c41‹ 1:11793fREFO" rail ict>1 ? 11. aTPTIT cM : R'(q) = 28q - 0.3c1 *tichl Sri aITTM rb-aqT'dfit, I (w) Trr4 #ti="4 -14-4vr 4,0.1 f4R7 : 1(t) = 120/3 3 K(0) = 25 I tAtR K ctoi 79-TWd*IN7 12. Tff aTrakg ITTfa-F)Tr 7r-d- 41 -A i 7: 7 6 0 3 13. oRgi z -Prt-mTri irrq rimiA Tich cnk : () z = xy, Ti4t1Ttilq : x + 2y = 2 z = 7 - y + x2, lifttf14 : x + y = 0 BECE-015 8 2,000
© Copyright 2024 ExpyDoc