Abstract No. 5313 Phosphoproteomic analysis with reverse phase protein array identifies N-myc downstream regulated gene 1 (NDRG1) inhibitor activity in a -deficient glioma cell line. as a biomarker of phosphatidylinositol-3-kinase (PI3K) Takeomi Inoue, Naoko Iwata, Eiji Nishiwaki, Yasuyuki Kirii Department of Research and Development, Carna Biosciences, Inc., BMA 3F 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047 Japan PIP2 NDRG1 Rheb Rheb 4EBP1 p70S6K P p-PRAS40 (Thr246) 2 p-S6Rb (Ser235/236) 0 5 p-NDRG1 (Thr346) p-Akt (Ser473) 4 p-S6Rb (Ser235/236) 3 2 -2 -1 - + - + -3 -2.5 -2 -1.5 -1 -0.5 1 2 0 -0.5 -1 -1.5 -2 -2.5 Immunoblo ng (c) p-NDRG1 (Thr346) p-PKC(pan) βII (Ser660) 0 -5 -3 -1 1 3 -0.5 γ-tubulin -1 -1.5 -2.5 Immunoblo ng LN229 6hr 24hr 2hr U-87 6hr LN229 2hr 24hr log conc (-) -0.5 -1 -1.5 ** ** ** ** cont R2=0.8997 p-PRAS40 (Thr246) p-Akt (Ser473) ** * 0 -0.5 -1 -1.5 -2 -2.5 -3 U-87 6hr 24hr * * * 2hr * PIK90 cont 6hr 24hr ** ** Figure 6. Verification of RPPA results by immunoblotting. (a) Immunoblott analysis of cell lysates prepared after 6-hour incubation with or without PIK90. Relative concentrations as log2 value from RPPA results showed good correlations with immunoblotting data for (b) p-Akt (Ser473) and (c) p-NDRG1 (Thr346). The latter values are densitometric ratios of the phosphoproteins to the loading control, γ-tubulin. Conclusion PIK90 1. In LN-299 cells, basal phosphorylation levels were higher than U-87 MG cells. However, PI3K and mTORC2 pathway signals were attenuated. (c) LN229 U87−cont−0hr 2hr p.NDRG1..Thr346. p.PKC.pan..ßII..Ser660. p.Ezrin..Thr567..Radixin..Thr564..Moesin..Thr558. Non.p.4E.BP1..Thr46. p.SGK..Thr256. p.S6Rb..Ser235.236. p.MYPT..Ser507. p.Akt..Ser473. p.4E.BP1..Thr70. p.PRAS40..Thr246. p.SGK..Ser422. p.eIF4G..Ser1108. p.Cofilin..Ser3. p.Rb..Ser807.811. p.Chk1..Ser317. p.Src..Tyr527. p.VEGF.Receptor.2..Tyr1175. p.p90RSK..Thr359.Ser363. p.Zap.70..Tyr319..Syk..Tyr352. p.Src.Family..Tyr416. p.Stat.3..Tyr705. p.B.Raf..Ser445. p.p90RSK..Thr573. p.FoxO1..Thr24..FoxO3a..Thr32..FoxO4..Thr28. p.PDGF.Receptor.ß..Tyr751. p.Histone.H3..Ser10. p.NPM..Ser4. p.eIF4B..Ser422. p.IRS.1.Ser612. p.c.Raf..Ser289.296.301. p.MKK3.MKK6..Ser189.207. p.4E.BP1..Ser65. p.Jak2..Tyr1007.1008. p.HSP27..Ser82. p.c.Raf..Ser259. p.Chk1..Ser345. p.TBK1.NAK..Ser172. p.Bim..Ser69. p.c.Raf..Ser338. p.SHP.2..Tyr580. p.IRS.1.Ser307. p.c.Jun..Ser73. p.Syk..Tyr323. p.Smad2..Ser465.467. p.Chk1..Ser296. p.p53..Ser46. p.GSK.3ß..Ser9. p.PKCz.l..Thr410.403. p.Smad2..Ser465.467..Smad3..Ser423.425. p.ß.catenin..Ser45. p.RSK3.Thr356.Ser360. p.Tyk2..Tyr1054.1055. p.ß.catenin..Ser33.37.Thr41. p.p53..Ser20. p.AP2M1..Thr156. p.Bcl.2..Ser70. p.AMPKß1..Ser108. p.SEK1.MKK4..Thr261. p.p53..Ser37. p.PLCg.Tyr759. p.ATF.2..Thr71. p.c.Jun..Ser63. p.Histone.H3..Thr3. p.FoxO3a..Ser318.321. p.Stat.3..Ser727. p.Rb..Ser780. p.EGF.Receptor..Tyr1045. p.Smad1.5..Ser463.465. p.Wee1..Ser642. p.p90RSK..Ser380. p.PKM2..Tyr105. p.mTOR..Ser2448. p.MYPT..Ser668. p.CREB..Ser133. p.Rb..Ser795. p.Histone.H3..Thr11. p.Bad..Ser155. p.Stat.1.Tyr701. p.MAPKAPK.2..Thr334. p.IGF.I.Receptor..Tyr980. Non.p.Src..Tyr527. p.SAPK.JNK.Thr183.Tyr185. p.ATR..Ser428. p.PAK1..Ser199.204..PAK2..Ser182.197. p.HER2.ErbB2..Tyr1221.1222. p.FoxO1..Thr24..FoxO3a..Thr32. p.PKD.PKCμ..Ser916. p.BAP1..Ser592. p.p53..Ser6. p.Chk2..Ser19. p.Aurora.A..Thr288. p.IGF.I.Receptor..Tyr1131..Insulin.Receptor..Tyr1146. p.IGF.I.Receptor..Tyr1135.1136. p.Bcl.2..Thr56. p.AMPKa..Thr172. p.PKCd.th..Ser643.676. p.VEGF.Receptor.2..Tyr951. p.Stat.6..Tyr641. p.PKCd..Thr505. p.c.Fos..Ser32. p.NFkB.p65..Ser536. p.Aurora.A..Thr288..Aurora.B..Thr232..Aurora.C..Thr198. p.PTEN..Ser380. p.PLCg.Tyr1217. p.VASP..Ser157. p.VEGF.Receptor.2..Tyr1059. p.SHIP2..Tyr1135. p.LRP6..Ser1490. p.Shc..Tyr239. p.p70.S6.kinase..Thr389. p.Bad..Ser136. p.MEK1.2..Ser217.221. p.BRCA1..Ser1524. p.Stat.2..Tyr690. p.HER4.ErbB4..Tyr984. p.Shc..Tyr317. p.EGF.Receptor..Tyr992. p.HER2.ErbB2..Tyr1248. p.MARCKS..Ser167.170. p.p53..Ser392. p.eIF4E..Ser209. p.PDGF.Receptor.ß..Tyr740. p.GSK.3a.ß..Ser21.9..GSK.3a.preferred p.c.Kit.Tyr703. p.RelB..Ser552. p.IRS.1.Ser636.639. p.Syk..Tyr525.526. p.Histone.H2A.X..Ser139. p.Ret..Tyr905. p.PKD.PKCμ..Ser744.748. p.PDGF.Receptor.ß..Tyr771. p.p53..Ser9. p.NFkB.p65..Ser468. p.PLCg.Tyr783. p.p44.42.MAP.kinase..Thr202.Tyr204. p.eEF2k..Ser366. p.Gab1..Tyr627. p.EGF.Receptor..Tyr1068. p.PKCa.ß..Thr638.641. p.Bad..Ser112. p.4E.BP1..Thr37.46. p.eNOS..Ser1177. p.PAK1..Ser144..PAK2..Ser141. p.Cyclin.D1..Thr286. p.A.Raf..Ser299. p.RSK2..Ser227. p.PDGF.Receptor.ß..Tyr1009. p.p38.MAPK..Thr180.Tyr182.. p.PAK2..Ser20. p.ATM..Ser1981. p.Raptor..Ser792. p.PKCth..Thr538. p.GSK.3a..Ser21. p.FoxO1..Ser256. p.PDGF.Receptor.ß..Tyr1021. p.TAK1..Thr184.187. p.LKB1..Ser428. p.TACC3..Ser558. p.Histone.H3..Ser28. p.FLT3..Tyr591. p.FoxO3a..Ser253. p.Gab2..Tyr452. p.Tuberin.TSC2..Thr1462. p.ALK..Tyr1282.1283. p.Met..Tyr1234.1235. p.Chk2..Ser33.35. p.Akt..Thr308. p.MAPKAPK.2..Thr222. p.PDK1..Ser241. p.Tuberin.TSC2..Ser939. Non.p.Src..Tyr416. p.Tuberin.TSC2..Tyr1571. p.Acetyl.CoA.carboxylase..Ser79. p.PAK1..Thr423..PAK2..Thr402. p.VASP..Ser239. p.Chk2..Thr68. p.MSK1..Thr581. p.MYPT..Thr853. p.IkB.a..Ser32.36. p.Stat.5..Tyr694. p.p53..Ser15. p.Mnk1..Thr197.202. U87−cont−24hr p-NDRG1 (Thr346) p-PKC (pan) βII (Ser660) p-SGK (Thr256) p-S6Rb (Ser235/236) Figure 1. Basal phosphoprotein content in untreated LN229 ( -wt) and U-87 MG ( -deficient) cells. Most phosphoprotein expressions are higher in LN229 cells except for several molecules in PI3K and mTOR complex 2 (mTORC2) pathway. 6hr p-NDRG1 (Thr346) U-87 24hr 2hr 6hr LN229 24hr 2hr 0 log conc (-) U-87 MG cells ( -deficient) (d) p-S6Rb (Ser235/236) -0.5 log conc (-) LN229 cells ( -wt) LN229−cont−24hr U87−cont−6hr PIK90 p-Akt (Ser473) U-87 MG p-NDRG1 (Thr346) 0 Fold change LN229−cont−0hr U87−cont−2hr cont R2=0.7037 0 1 24hr p-S6Rb (Ser235/236) 2 0 0 Fold change Time LN229−cont−6hr PIK90 (b) -2.5 LN229−cont−2hr 6hr U-87 1 (a) 2hr 1 2hr -2 log conc (-) 0.5 24hr 0 Figure 3. The change in phosphorylation of 180 phosphoproteins in (a) LN229 and (b) U-87 MG cells after 6-hour treatment with PIK90. The phosphoproteins indicated in red exhibited significant change by PIK90 treatment. The change in phosphorylation of NDRG1 (Thr346) was only found in U-87 MG ( -deficient) cell line. -2 Value 6hr (b) PIK90 p-PRAS40 (Thr246) 1 p-NDRG1 (Thr346) 0 LN229 LN229 6 p-Akt (Ser473) 3 1 0.5 2hr * -2 7 4 p-Akt (Ser473) ** -0.5 -1.5 (a) (b) U-87 MG -1 -1 * 1.5 Figure 5. The time course of change in phosphorylation of SGK in LN229 and U-87 MG cells following PIK90 treatment. The phosphorylation of both SGK(Ser422) and SGK (Thr256) was inhibited by treatment with PIK90 in U-87 MG cells. However, the effect was weak comparing with inhibition of NDRG1 (Thr346) phosphorylation. The values are mean ± s.d. (n=8). cont : untereated control, *: p < 0.05, **: p < 0.001 vs control. S235/S236 7 -2 -0.5 cont Figure 2. PI3K signaling pathway in LN229 and U-87 MG cells. 5 24hr -2.5 S6Rb S6Rb 6 6hr p70S6K S235/S236 (a) LN229 2hr RPPA P 24hr mTORC1 mTORC1 0 −0.5 NDRG1 PRAS40 PRAS40 http://www.scbt.com/datasheet-364587-CASNumber-677338-12-4.html [2] Masuda M et al. Mol Cell Proteomics, M113.033845, March 18, 2014. −1 T346 P TSC1 P log conc (-) TSC2 T246 6hr p-SGK (Thr256) 2 U-87 0 SGK1 AKT [1] Color Key 2hr P T256 P S473 S422 P T308 P T346 P TSC1 P P T256 SGK1 TSC2 Cell Culture : Two human GBM cell lines, LN229 and U-87 MG cells were incubated in DMEM or MEM respectively, containing 10% FBS. Cells were treated with 0.5μM PIK-90 and harvested immediately and after 2, 6 and 24 hours. PIK-90 is reported to inhibit PI3Kα (IC50 = 11nM), PI3Kβ (IC50 = 350nM), PI3Kδ (IC50 = 58nM) and PI3Kγ (IC50 = 18nM)[1]. RPPA : Cells were collected, washed and homogenized in lysis buffer. Serially diluted lysates (1:1, 1:2, 1:4, 1:8) were spotted onto glass slides with an arrayer equipped with 32 pins in order to place the expression level of samples in a dynamic range for signal detection. Each sample dilution series were then spotted in eight replicates. Signals generated from slides stained with anti-phospho antibodies were analyzed employing SuperCurve algorithm to obtain a single value of relative concentration for each lysate to draw the heatmap. For the statistical analysis, eight replicates were separately handled (n=8) and two sample t-test was performed between untreated control and treated samples. The targets of the anti-phospho antibodies utilized in this study are shown in the website (http://www.carnabio.com/english/ images/rppa_antibody_en.pdf?121130) and a paper[2]. P S473 S422 P AKT 4EBP1 PDK1 PDK1 T308 P T246 p-SGK (Ser422) -deficient) LN229 mTORC2 PDK1 -log10(p-value) Methods PIP3 mTORC2 U-87 MG cells ( PI3Ka PTEN PTE PT T EN TE PDK1 -log10(p-value) To elucidate the role of in PI3K signaling, the phosphorylation status of two glioma cell lines, LN229 (wild type ) and U-87 MG ( deficient) was investigated with phosphoproteomic reverse phase protein array (RPPA). When basal phosphorylation was compared between both cell lines, the phosphorylation of N-myc downstream regulated gene 1 (NDRG1) (Thr346), a physiological substrate of SGK1, was increased in U-87 MG cells compared with the levels in LN229 cells. Following treatment with PIK-90, a PI3K inhibitor, phosphorylation of Akt (Ser473) and its direct substrate PRAS40 (Thr246) were decreased in both cell lines, however, NDRG1 (Thr346) phosphorylation was strongly inhibited only in U-87 MG cells. These data suggest that deletion affects the phosphorylation status of NDRG1 in U-87 MG cells and the differential effects of PIK-90 on LN229 and U-87 MG cells is dependent. Therefore, detecting NDRG1 (Thr346) phosphorylation could be a biomarker for PI3Kα inhibitor treatment in deleted cancer cells. Ongoing studies are focusing on elucidating the mechanism of action of PIK-90 in glioma cell lines. -wt) RPPA PIP3 Aberrant activation of phosphoinositide 3-kinase (PI3K) signaling is commonly found in cancer, and leads to deregulation of several intracellular processes, including cell survival, growth, proliferation and migration. PI3K activates AKT, serum/glucocorticoid regulated kinase (SGK), phosphoinositide -dependent kinase 1 (PDK1), mammalian target of rapamycin (mTOR), and several other molecules involved in cell progression and survival. Reports have also indicated that the deletion of the gene encoding the tumor suppressor phosphatase and tensin homologue ( ) is one of the key factors controlling activation of the PI3K pathway. Although many therapies to target the Ras-PI3K-mTOR axis in glioblastoma (GBM) have been attempted, their efficacies have not been pronounced, presumably because of the complexity of PI3K mediated signaling. LN229 cells ( PI3Ka PTEN log conc (-) PIP2 Abstract -1 -1.5 -2 -2.5 ** * ** * cont PIK90 6hr 2. In contrast, in U-87 MG cells, PI3K and mTORC2 pathways were activated. U-87 24hr 0 -0.5 -1 -1.5 -2 -2.5 -3 2hr 6hr 24hr ** * * cont PIK90 Figure 4. The time course of phosphoprotein expressions in LN229 and U-87 MG cells after exposure to PIK90. The phosphorylation of (a) Akt (Ser473), (b) PRAS40 (Thr246) and (c) S6 ribosomal protein (S6Rb) (Ser235/236) was decreased in both cell lines in response to PIK90 treatment. In contrast, (d) NDRG1 (Thr346) phosphorylation was inhibited only in U-87 MG cells. The inhibition was time dependent-manner up to 24 hours. The values are mean ± s.d. (n=8). cont : untreated control, *: p < 0.05, **: p < 0.001 vs control. 3. By treatment with PIK90, among PI3K and mTORC2 pathway, the phosphorylation of NDRG1 (Thr346) was strongly inhibited in U-87 MG cells. 4. These results suggest that NDRG1 (Thr346) phosphorylation could be an efficacy biomarker of PI3Kα inhibitor treatment. 5. The down-regulation of SGK1 by PIK90 is relatively weak comparing with the suppression of NDRG1 phosphorylation, indicating that NDRG1 phosphorylation would be also controlled by unknown signaling pathways. 6. RPPA results showed good correlations with immunoblotting data and RPPA is an appropriate tool for surveying phosphoproteome. © 2014 Carna Biosciences, Inc.
© Copyright 2025 ExpyDoc