Normalisation of field degradation data and the inclusion of aged sorption in DegT50 determination Wendy van Beinum, Sabine Beulke The Food and Environment Research Agency (Fera) York, United Kingdom Outline Normalisation of field degradation 1. When to use normalisation 2. Methods for deriving normalised field DegT50 Aged sorption 1. Measuring laboratory aged sorption 2. Including aged sorption in field DegT50 When to use Normalisation • Derivation of field DegT50 at reference temperature and moisture conditions (usually 20°C, pF2) • Used in models that account for temp and moisture • Allows for averaging DegT50s lab/field When to use Normalisation • Persistence endpoint (DT50) • to compare with trigger values • dissipation (incl. photolysis, volatilisation, leaching) • no normalisation: relevant conditions • Degradation endpoint (DegT50_matrix) • input for modelling (PEC calculations) • degradation only (eliminate photolysis, volatilisation, leaching) • normalisation: derive DegT50 at reference conditions (20°C, pF2) Methods for normalisation of field DegT50 values FOCUS degradation kinetics guidance (2006) • Method 1: Time step normalisation • Method 2: Normalisation of degradation rate Method 1: Time step normalisation • Reducing or increasing day lengths depending on soil temperature and moisture Moisture correction factor: Temperature correction factor: . / 10 Example: 2.58 Normalised day length: / 0.39 0.2 0.4 . 0.24 0.62 Method 1: Time step normalisation DAT Avg. temp (°C) fTemp Moist (v/v) fMoist DNorm 0 cumulative DNorm 0 1 10 0.39 0.20 0.62 0.24 0.24 2 10 0.39 0.25 0.72 0.29 0.53 3 12 0.47 0.25 0.72 0.34 0.87 4 12 0.47 0.25 0.72 0.34 1.21 .. Reference conditions: Tref =20°C θpF2 = 0.4 Note fTemp = 0 at T ≤ 0°C and fMoist = 1 at θ ≥ θpF2 DNorm %of applied %of applied 3.8 95.1 102.3 8 90.5 80.4 15 66.9 70.7 24.2 65.4 50.5 31.8 52.4 51.0 49.4 28.2 31.7 66.6 25.5 22.2 Method 2: Normalisation of degradation rate • Modelling e.g. using ModelMaker Pesticide kref*fMoist*fTemp Temp (°C) Moist (v/v) 0 11.0 0.21 1 10.5 0.20 2 11.8 0.24 3 12.5 0.25 4 12.2 0.24 fTemp fMoist Sink DAT .. DegT50 = ln(2)/kref Method 2: Normalisation of degradation rate DegT50matrix = 11.3 days Soil Temperature and Moisture • Depth relevant to bulk of pesticide mass • Measured at high resolution (e.g. daily) Alternative: • Simulate daily soil temperatures and moisture content using a leaching model (e.g. PEARL) • Using weather data (incl. potential evapotranspiration) and soil properties (pedo-transfer functions) • Compare with moisture measurements Normalisation of field degradation – final note • Consistency: Use same temperature and moisture dependency parameters throughout when deriving DegT50 and in model simulations Outline Normalisation of field degradation 1. When to use normalisation 2. Methods for deriving normalised field DegT50 Aged sorption 1. Measuring laboratory aged sorption 2. Including aged sorption in field DegT50 Aged sorption • Account for increase in sorption in leaching assessments (higher-tier option for PEC GW) • Guidance on how aged sorption studies for pesticides should be conducted, analysed, and used in regulatory assessments (Proposal by Fera/CRD 2012) • Expected EFSA Opinion in 2015 Aged sorption study • OECD 307 laboratory degradation study with additional aqueous extraction step CaCl2 extraction → Aqueous concentration Solvent extraction → Total extractable mass Example dataset 25 Mass (µg) 20 15 10 Aged sorption model; Chi2=1.1 5 Measurements 0 0 50 Time (d) 100 50 Time (d) 100 Concentration (µg/L) 0.25 0.2 0.15 0.1 0.05 0 0 Aged sorption model • • Degradation Increase in sorption Aged sorption model e.g. PearlNeq or ModelMaker C QEq QNeq equilibrium sorption nonequilibrium sorption Freundlich: KF,EQ 1/n kdes fNE Aged sorption model C QEq degradation DegT50EQ QNeq Example 25 Mass (µg) 20 15 10 Aged sorption model; Chi2=1.1 5 Measurements 0 0 50 Time (d) 100 Mini= 19.8 µg DegT50EQ = 87 d KF,EQ = 2.76 L kg-1 fNE = 0.45 kdes = 0.037 d-1 0.25 Concentration (µg/L) optimised parameters 0.2 0.15 0.1 0.05 0 0 50 Time (d) 100 GW leaching assessment Guidance: use results from individual soils in PECGW modelling PEC GW with and without aged sorption Combining higher-tier options for sorption and degradation Field DegT50 Refined PECGW calculations Lab Aged Sorption Refined PECGW calculations Combining higher-tier options for sorption and degradation • DegT50EQ from aged sorption studies is conceptually different from usual DegT50 • Not possible to combine/average DegT50 values from aged sorption and other studies C QEq DegT50EQ DegT50 QNeq Combining higher-tier options for sorption and degradation Field DegT50EQ Lab Aged Sorption Refined PECGW calculations Use of metabolite and field data to generate aged sorption parameters for regulatory leaching assessments (ongoing project, CRD PS2254) Deriving DegT50 from field data using aged sorption Step 1: • Aged sorption study in laboratory (4 soils) • Derive aged sorption parameters • Calculate averages for KfOM,EQ, fNE and kdes Step 2: • Perform field studies and measure substance mass decline over time • Use aged sorption model with normalisation to derive field DegT50EQ Deriving DegT50 from field data using aged sorption • Aged Sorption model (e.g. implemented in ModelMaker, Gurney et al. 2007) C QEq QNeq Deriving DegT50 from field data using aged sorption • Normalisation of degradation rate for soil moisture and temperature (Note: No time step normalisation!) • Optimise kref for fixed sorption parameters. C QEq QNeq kref*fMoist*fTemp Sink DegT50EQ = ln(2)/kref DegT50MATRIX = 221 days DegT50EQ = 142 days Data: Gurney et al. (2007) DegT50 dependent on aged sorption parameters • Field DegT50EQ dependent on aged sorption parameters • Which is the real DegT50EQ? Aged sorption parameters Fitted field KOC,EQ 1/n fNE kdes DegT50EQ Soil 1 104 0.858 0.574 0.064 143 Soil 2 130 0.891 0.223 0.02 182 Soil 3 122 0.868 0.494 0.032 149 Soil 4 214 0.916 0.919 0.018 115 DegT50 dependent on aged sorption parameters • Need to use same combination of aged sorption and DegT50EQ in GW assessment to get the same amount of degradation Questions and uncertainties • Can we use average aged sorption parameters to derive field DegT50 values? • Can we use average DegT50EQ from different field for PECGW assessments? Aged sorption (lab) Degradation (field) Lab soil 1 Field soil A Lab soil 2 Field soil B Lab soil 3 Field soil C Lab soil 4 Field soil D GW assessment PECGW Ongoing work • Evaluate the effect of combining parameters from different soils and studies • Can default parameters be used to derive a field DegT50EQ? • Implications for regulatory use (tiered approach) Thank you! Deriving DegT50 from field data using aged sorption – method 2 • Using reverse modelling in PEARL (coupled with PEST) to derive DegT50EQ • PEARL has option to include aged sorption • Use lab aged sorption parameters • Optimise DegT50 to fit soil residues PEARL-PEST optimisation procedure Weather data • • • Rainfall Min and max temp Evapotranspiration PEARL Soil profile • • Texture, OC% Ksat, Van Genuchten Substance parameters • Parameters • • Application rate DegT50EQ Output Total mass in profile Aged sorption parameters: KOM,EQ, fNE, kdes PEST Field data • Total mass in profile
© Copyright 2024 ExpyDoc