MA1200 Exercise for Chapter 7 Techniques of Differentiation Brief Solutions First Principle 17 1. a) (3 x 4) 2 lim b) h 0 2( x h ) 1 2 x 1 2( x h ) 1 2 x 1 h 2( x h ) 1 2 x 1 2h 2 h 0 h[ 2( x h) 1 2 x 1] 2 2x 1 1 f ' ( x) 2x 1 lim Product/Quotient/Chain Rules 1 6 6 2. a) 28 x 12 x 1 2 3 4 x x x x c) 25 x 2 8x x3 e) (4 x 2 )1.5 3 1 23 3 3 b) x 3 12 d) (3 2 x) 2 f) 3000(1 2 x 5 x 2 ) 2999 (2 10 x) g) 2( x 2 4)(2 x)(2 x3 1)3 ( x 2 4) 2 3(2 x3 1) 2 (6 x 2 ) h) 6 sin 2 (2 x) cos(2 x) 15 x 2 sin( x3 1) 1 i) x ln x ln(ln x) k) cot x 1 m) 1 x x 3 o) e ( x cos x 3 x 2 cos x x 3 sin x) p) j) ln x l) tan x n) e x sin(e x ) (3 x 2 5 x)e x (2 x sin x 2 cos x) e x (2 x sin x)(6 x 5) (3 x 2 5 x) 2 (n 1) x n nx n 1 1 x2 4x 6 r) ( x 1) 2 ( x 2 3x)2 s) 2 cos(2 x) cos(3x) 3 sin(2 x) sin(3x) sin(ln(2 x) 1) 1 t) cos(ln[cos(ln(2 x) 1)] 1) cos(ln(2 x) 1) x q) 3. a) y ' x / y c) b) y ' ( x2 y2 ) x y x ( x2 y2 ) y 1 2x y x 2y dy dy dt 9t 2 9 9 9 4. a) t when t = 1. Tangent: y 5 ( x 3) , y 2.25 x 1.75 Normal: dx dx 4 4t 4 4 dt 4 4 19 y 5 x ( x 3) , y 9 9 3 17 dy 1 17 b) when t = 4. Tangent: y x 5 , 2 t 4 dx t 4 4 135 Normal: y x 17 34 cot x 5. a) ( x 1) cot x csc 2 x ln( x 1) x 1 x e x (4 x 3 4 x) b) ( x 4 2 x 2 )e e x ln( x 4 2 x 2 ) x 4 2 x 2 c) (sin 5 x) x 2 2 [2 x ln(sin 5 x) 5( x 2 2) cot 5 x] 3 6. a) y ( n ) 3(4n )e 4 x n b) y ( n ) 5(6n ) sin 6 x 7 2 c) y ( n ) 2n 1 (1) n n!(2 x 1) n 1 3! 11! 11 n x 3 n 6 (11 n)! x (3 n)! 1 n 3 11! (n) 11 n when 4 n 11 d) y x (11 n)! 12 n 0 Leibniz’s rule e 2 x x 2 (3 2 x) n 1 2x (n) 2 7. a) y 2e x(2 x 6 x 3) when n 2 n 3 2 x 3 3 2 2 n3 2 e [2 x 3(2 )nx 3(2)n(n 1) x n(n 1)(n 2)] b) y ( n ) 2 (2 x 4) cos(2 x 1) 2( x 4 x 7) cos 2 x 1 2 when n 1 n n 2 ( x 4 x 7 ) 2 cos 2 x 1 2 (n 1) n2 n 1 cos 2 x 1 (2 x 4) 2 (n 2) n(n 1)2 n 2 cos 2 x 1 when n 2 2 2 (1 x) 2 x(2 x) when n 1 c) y ( n ) (1) n n!(1 x) n 1 when n 2 Miscellaneous 8. If y x sin x , prove that x 2 y '' 2 xy ' 2 x 2 y 0 . Proof: y x sin x y ' sin x x cos x y " 2 cos x x sin x . Hence x 2 y '' 2 xy ' (2 x 2 ) y 0 . 9. If u ax 2 2bx c , prove that Proof: 1 du d 2 (ax 2bx c) 2 dx dx d 2ax 2 3bx c ( xu ) . dx u ax b 1 (ax 2 2bx c) 2 d ax b 2ax 2 3bx c ax b ( xu ) x u . Then . dx u u u 1 if | x | c *10. Find the values of a and b (in terms of c) provided f ' (c) exists, where f ( x) |x| . ax b if | x | c Solution: 1 if x c x 1 if | x | c f ( x) ax b if c x c f ( x) |x| ax b if | x | c 1 if x c x In order that f ' (c) exists, f (x) must be continuous at x c . 1 1 That is, lim f ( x) lim lim f ( x) ac b f (c) . x c x c x c x c 1 1 1 cx xc (ac b) f ( x ) f (c ) 1 1 lim lim x lim x c lim xc lim xc lim 2 . x c x c x c x c x c x c xc xc xc xc xc xc c f ( x ) f (c ) ax b (ac b) a ( x c) lim lim lim a. x c x c x c xc xc xc 1 f ( x ) f (c ) f ( x ) f (c ) That f ' (c) exists means lim 2 lim a. x c x c xc xc c 1 a 2 1 1 1 2 1 c . Therefore, a 2 . Putting in ac b , we have b b . Hence c c c c c b 2 c 3 11. A function y of x is defined by the equation sin( x y ) m sin y . Express y explicitly in terms of x. dy 1 m cos x Hence, or otherwise, show that . dx 1 2 m cos x m 2 Proof: sin( x y ) m sin y sin x cos y cos x sin y m sin y tan y sin x sin x y tan 1 m cos x m cos x Then sin x d tan 1 dy 1 m cos x m cos x dx dx 1 2m cos x m 2 12. Let y x 1 cot x , find dy . dx Solution: dy cot x cot x cot x x 1 csc2 x ln x 1 x 1 dx x 1 13. Show that f ' ( x) 0 , where f ( x) tan 1 x tan 1 1 . x Solution: f '( x) 1 x2 1 0. 1 x2 1 x2 x2 x t 2 2 where t . 14. Consider the parametric curve 3 y t dy d 2 y , and the equation of the tangent line to the curve at the point (3, 1). Find dx dx 2 Solution: dx d 2 y dy d 2 x dy dy dy dy dt d 2 y d dy d dt d dt dt dt dt 2 dt dt 2 dt 2 2 dx dx dx dx dx dx dx dt dx dx dx dx dt dt dt dt dy 3 . The slope of the tangent line to the curve at the point 3,1 = x 3 dx 2 Therefore, the equation of the tangent line to the curve at the point 3,1 is: y 1 3 x 3 . 2 15. By Leibnitz’s theorem on repeated differentiation, find the nth derivatives of the function y = e x cos 2 x . 4 Solution: By Leibnitz’s theorem on repeated differentiation, we have n n d k g d nk f n d0 f d0g dn n! , k 0,1, , n and 0! 1 . , where f , g, fg k n nk 0 0 dx dx dx dx k 0 k dx k k ! n k ! n n n dn x We have n e cos2 x 2k e x cos 2 x 2 dx k 0 k -End- 5
© Copyright 2024 ExpyDoc