Coadsorption properties of CO2 and H2O on TiO2 rutile(110): A dispersion-corrected DFT study Dan C. Sorescu,1,a) Junseok Lee,1,2 Wissam A. Al-Saidi,3,4 and Kenneth D. Jordan1,4 1 United States Department of Energy, National Energy Technology Laboratory, Pittsburgh, Pennsylvania 15236, USA 2 URS, P.O. Box 618, South Park, PA 15219, USA 3 Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA 4 Department of Chemistry and Center for Molecular and Materials Simulations, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA Supplementary Material a) To whom correspondence should be addressed 1 FIG. S1 Minimum energy pathway for dissociation of an H2O molecule at 1 ML coverage for the case when H2O molecules along the Ti row have an alternate orientation. The dissociation barriers Eb and reaction energies Er obtained from calculations in the (4x2) supercell with four and respectively five slab layers are indicated in the inset table. 2 TABLE SI. Relative energiesa, adsorption energiesb and representative geometrical parametersc for the formic acid and formate species adsorbed on the oxidized and defective rutile (110) surfaces. Pictorial views of the indicated configurations are shown in Fig.6 in text. Configurationd [Surface Type] Oxidized Surface FA(1) [-1] FA(2) [-2] FA(3) [-1] FA(4) [-1] FA(5) [-1] FA(6) [-2] 2.303 2.132, 2.184 2.216 2.076 1.930 2.056, 2.078 Defective Surface FA(7) [-2] FA(8) [-2] FA(9) [-2] FA(10) [-3] 2.528, 2.537 2.338, 2.350 2.177, 2.163 2.272, 2.287, 2.135 r(Ti-O) (Å) r(Ob…H)c r(ObH…O) (Å) (Å) 2.080 2.099 1.363 1.487 2.473 1.602 a r(C-H) (Å) 1.383, 1.204 1.274, 1.273 1.326, 1.235 1.285, 1.253 1.242, 1.298 1.270, 1.275 1.105 1.104 1.103 1.104 1.107 1.105 0.996 1.398, 1.198 1.301, 1.249 1.238, 1.312 1.293, 1.258 1.101 1.100 1.107 1.106 0.985 1.024 The references energies correspond to C(1) and 2OHb(7) states separated at large distances on the oxidized surface and to C (6) and 2OHb(7) on the defective surface when adsorbed in the same slab but on different rows as indicated by the first inset figure in panel b The indicated adsorption energies Eads,f are given with respect to energies of an isolated slab and an isolated formic acid molecule. c The atomic nomenclature for formic acid is provided in the inset figure at the bottom of this table. d Notation for each configuration also specifies the number µn of bonds to the metal centers and the total number m of bonds. 3 r(O1-H) Erel (Å) (kcal/mol) r(C-O1) [r(C-O2)] (Å) 0.985 1.099 Eads,f (kcal/mol) 5.9 5.2 1.2 -7.0 -7.4 -19.3 19.5 20.3 24.2 32.4 32.8 44.8 6.7 -7.0 -18.9 -21.8 15.9 29.6 41.5 44.4 TABLE SII. The set of calculated vibrational frequenciesa of the formic acid and formate species adsorbed on the oxidized and defective rutile (110) surfaces. Pictorial view of the indicated configurations are indicated in Fig. 6 in text. Configuration Vibrational Frequencies (cm-1) 6 7 8 9 10 1 Oxidized Surface FA(1) 3369 FA(2) 3652 FA(3) 3593 FA(4) 3019 FA(5) 2979 FA(6) 3666 2 3 4 5 3008 3021 3026 1818 2311 3002 1784 1530 1664 1482 1564 1512 1358 1375 1360 1395 1344 1349 1199 1266 1313 1356 1283 1339 1037 1012 1141 1291 1117 1000 1003 797 1053 1189 1021 722 740 665 713 1002 999 667 625 367 639 692 701 341 Defective Surface FA(7) 3580 FA(8) 3066 FA(9) 2974 FA(10) 3660 3043 2842 2710 2996 1812 1625 1612 1528 1336 1424 1346 1354 1213 1353 1252 1296 971 1248 1010 1008 960 1021 967 714 626 900 829 648 594 684 733 407 a For formate species the frequencies of the OHb specie are also included in this list. 4 11 12 13 14 15 210 291 184 291 350 333 179 280 171 275 234 328 142 232 147 230 214 272 130 101 89 154 153 189 47 87 80 124 127 167 13 70 20 57 48 112 201 266 306 300 162 241 258 293 115 183 245 256 52 132 180 249 29 111 147 166 19 73 22 142 TABLE SIII. Relative energiesa and representative geometrical parametersb for the bicarbonate species adsorbed on the oxidized and defective rutile (110) surfaces. Pictorial views of the indicated configurations are shown in Fig. 6 in text. Configurationc r(Ti-O) (Å) r(C-O1) (Å) r(C-O2) (Å) r(OHb…O) (Å) 2.867 2.933 2.761 2.781 Oxidized Surface BC(1) [-1] BC(2) [-2] BC(3) [-2] BC(4) [-2] 2.111, 2.149 1.943, 2.263 2.037, 2.076 2.050, 2.059 1.329 1.445 1.342 1.342 1.273, 1.282 1.294, 1.210 1.270, 1.283 1.279, 1.273 Defective Surface BC(5) [-3] BC(6) [-2] BC(7) [-2] BC(8) [-3] 2.056, 2.360, 2.374 2.168, 2.194 2.162, 2.157 2.248, 2.260, 2.137 1.555 1.412 1.333 1.340 1.209, 1.262 1.316, 1.213 1.323, 1.243 1.266, 1.291 a 1.524, 1.838 The references energies correspond to C(1) and W(1) states separated at large distances on the oxidized surface and to C(6) and W(1) on the defective surface, separated at larger distances. b The atomic nomenclature for bicarbonate species is provided in the inset figure. c Notation for each configuration also indicates the number µn of bonds to the metal centers and the total number m of bonds. 5 r(O1-H) Erel (Å) (kcal/mol) 0.980 0.978 0.979 0.979 11.1 1.9 -11.3 -12.1 0.980 0.979 0.999 0.980 1.1 -4.8 -12.6 -14.5 TABLE SIV. The set of calculated vibrational frequencies of the bicarbonate speciesa on the oxidized and defective rutile (110) surfaces. Pictorial view of the indicated configurations are indicated in Fig. 6 in text. Configuration Vibrational Frequencies (cm-1) 6 7 8 9 10 1 Oxidized Surface BC(1) 3666 BC(2) 3673 BC(3) 3675 BC(4) 3669 2 3 4 5 1574 1803 1561 1559 1488 1257 1409 1415 1164 1136 1185 1189 1042 849 1046 1047 769 729 770 770 701 628 653 653 565 567 626 629 537 452 565 569 Defective Surface BC(5) 3634 BC(6) 3660 BC(7) 3259 BC(8) 3656 1858 1772 1633 1554 1250 1260 1359 1412 1121 1119 1260 1177 738 905 1073 1037 720 765 784 787 632 618 762 641 532 570 665 603 456 527 630 598 a The set of vibrations corresponding to OHb specie has not been included in this list. 6 11 12 13 14 15 258 295 286 294 196 236 253 256 167 188 192 194 88 135 173 178 77 110 131 133 46 10 45 47 260 291 277 266 233 226 251 251 220 215 217 220 192 150 138 206 116 82 107 121 21 42 37 41
© Copyright 2024 ExpyDoc