Coadsorption properties of CO2 and H2O on TiO2

Coadsorption properties of CO2 and H2O on TiO2 rutile(110):
A dispersion-corrected DFT study
Dan C. Sorescu,1,a) Junseok Lee,1,2 Wissam A. Al-Saidi,3,4 and Kenneth D. Jordan1,4
1
United States Department of Energy, National Energy Technology Laboratory,
Pittsburgh, Pennsylvania 15236, USA
2
URS, P.O. Box 618, South Park, PA 15219, USA
3
Department of Chemical and Petroleum Engineering, University of Pittsburgh,
Pittsburgh, Pennsylvania 15261, USA
4
Department of Chemistry and Center for Molecular and Materials Simulations,
University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
Supplementary Material
a)
To whom correspondence should be addressed
1
FIG. S1 Minimum energy pathway for dissociation of an H2O molecule at 1 ML
coverage for the case when H2O molecules along the Ti row have an alternate orientation.
The dissociation barriers Eb and reaction energies Er obtained from calculations in the
(4x2) supercell with four and respectively five slab layers are indicated in the inset table.
2
TABLE SI. Relative energiesa, adsorption energiesb and representative geometrical parametersc for the formic acid and formate
species adsorbed on the oxidized and defective rutile (110) surfaces. Pictorial views of the indicated configurations are shown in Fig.6
in text.
Configurationd
[Surface Type]
Oxidized Surface
FA(1) [-1]
FA(2) [-2]
FA(3) [-1]
FA(4) [-1]
FA(5) [-1]
FA(6) [-2]
2.303
2.132, 2.184
2.216
2.076
1.930
2.056, 2.078
Defective Surface
FA(7) [-2]
FA(8) [-2]
FA(9) [-2]
FA(10) [-3]
2.528, 2.537
2.338, 2.350
2.177, 2.163
2.272, 2.287, 2.135
r(Ti-O)
(Å)
r(Ob…H)c r(ObH…O)
(Å)
(Å)
2.080
2.099
1.363
1.487
2.473
1.602
a
r(C-H)
(Å)
1.383, 1.204
1.274, 1.273
1.326, 1.235
1.285, 1.253
1.242, 1.298
1.270, 1.275
1.105
1.104
1.103
1.104
1.107
1.105
0.996
1.398, 1.198
1.301, 1.249
1.238, 1.312
1.293, 1.258
1.101
1.100
1.107
1.106
0.985
1.024
The references energies correspond to C(1) and 2OHb(7) states separated at large distances
on the oxidized surface and to C (6) and 2OHb(7) on the defective surface when adsorbed
in the same slab but on different rows as indicated by the first inset figure in panel
b
The indicated adsorption energies Eads,f are given with respect to energies of an isolated slab
and an isolated formic acid molecule.
c
The atomic nomenclature for formic acid is provided in the inset figure at the bottom of this table.
d
Notation for each configuration also specifies the number µn of bonds to the metal centers and the
total number m of bonds.
3
r(O1-H)
Erel
(Å)
(kcal/mol)
r(C-O1) [r(C-O2)]
(Å)
0.985
1.099
Eads,f
(kcal/mol)
5.9
5.2
1.2
-7.0
-7.4
-19.3
19.5
20.3
24.2
32.4
32.8
44.8
6.7
-7.0
-18.9
-21.8
15.9
29.6
41.5
44.4
TABLE SII. The set of calculated vibrational frequenciesa of the formic acid and formate species adsorbed on the oxidized and
defective rutile (110) surfaces. Pictorial view of the indicated configurations are indicated in Fig. 6 in text.
Configuration
Vibrational Frequencies (cm-1)
6
7
8
9
10
1
Oxidized Surface
FA(1)
3369
FA(2)
3652
FA(3)
3593
FA(4)
3019
FA(5)
2979
FA(6)
3666
2
3
4
5
3008
3021
3026
1818
2311
3002
1784
1530
1664
1482
1564
1512
1358
1375
1360
1395
1344
1349
1199
1266
1313
1356
1283
1339
1037
1012
1141
1291
1117
1000
1003
797
1053
1189
1021
722
740
665
713
1002
999
667
625
367
639
692
701
341
Defective Surface
FA(7)
3580
FA(8)
3066
FA(9)
2974
FA(10)
3660
3043
2842
2710
2996
1812
1625
1612
1528
1336
1424
1346
1354
1213
1353
1252
1296
971
1248
1010
1008
960
1021
967
714
626
900
829
648
594
684
733
407
a
For formate species the frequencies of the OHb specie are also included in this list.
4
11
12
13
14
15
210
291
184
291
350
333
179
280
171
275
234
328
142
232
147
230
214
272
130
101
89
154
153
189
47
87
80
124
127
167
13
70
20
57
48
112
201
266
306
300
162
241
258
293
115
183
245
256
52
132
180
249
29
111
147
166
19
73
22
142
TABLE SIII. Relative energiesa and representative geometrical parametersb for the bicarbonate species adsorbed on the oxidized and
defective rutile (110) surfaces. Pictorial views of the indicated configurations are shown in Fig. 6 in text.
Configurationc
r(Ti-O)
(Å)
r(C-O1)
(Å)
r(C-O2)
(Å)
r(OHb…O)
(Å)
2.867
2.933
2.761
2.781
Oxidized Surface
BC(1) [-1]
BC(2) [-2]
BC(3) [-2]
BC(4) [-2]
2.111, 2.149
1.943, 2.263
2.037, 2.076
2.050, 2.059
1.329
1.445
1.342
1.342
1.273, 1.282
1.294, 1.210
1.270, 1.283
1.279, 1.273
Defective Surface
BC(5) [-3]
BC(6) [-2]
BC(7) [-2]
BC(8) [-3]
2.056, 2.360, 2.374
2.168, 2.194
2.162, 2.157
2.248, 2.260, 2.137
1.555
1.412
1.333
1.340
1.209, 1.262
1.316, 1.213
1.323, 1.243
1.266, 1.291
a
1.524, 1.838
The references energies correspond to C(1) and W(1) states separated at large distances on the
oxidized surface and to C(6) and W(1) on the defective surface, separated at larger distances.
b
The atomic nomenclature for bicarbonate species is provided in the inset figure.
c
Notation for each configuration also indicates the number µn of bonds to the metal centers and the
total number m of bonds.
5
r(O1-H)
Erel
(Å)
(kcal/mol)
0.980
0.978
0.979
0.979
11.1
1.9
-11.3
-12.1
0.980
0.979
0.999
0.980
1.1
-4.8
-12.6
-14.5
TABLE SIV. The set of calculated vibrational frequencies of the bicarbonate speciesa on the oxidized and defective rutile (110)
surfaces. Pictorial view of the indicated configurations are indicated in Fig. 6 in text.
Configuration
Vibrational Frequencies (cm-1)
6
7
8
9
10
1
Oxidized Surface
BC(1)
3666
BC(2)
3673
BC(3)
3675
BC(4)
3669
2
3
4
5
1574
1803
1561
1559
1488
1257
1409
1415
1164
1136
1185
1189
1042
849
1046
1047
769
729
770
770
701
628
653
653
565
567
626
629
537
452
565
569
Defective Surface
BC(5)
3634
BC(6)
3660
BC(7)
3259
BC(8)
3656
1858
1772
1633
1554
1250
1260
1359
1412
1121
1119
1260
1177
738
905
1073
1037
720
765
784
787
632
618
762
641
532
570
665
603
456
527
630
598
a
The set of vibrations corresponding to OHb specie has not been included in this list.
6
11
12
13
14
15
258
295
286
294
196
236
253
256
167
188
192
194
88
135
173
178
77
110
131
133
46
10
45
47
260
291
277
266
233
226
251
251
220
215
217
220
192
150
138
206
116
82
107
121
21
42
37
41