Time-Resolved Atomic and Molecular Dynamics in XUV and IR Laser Fields Robert Moshammer Max-Planck-Institut für Kernphysik Heidelberg Outline Part 2: Atoms and Molecules in Intense XUV Fields • Free-Electron Lasers - Working Principle and Parameters • Non-Linear XUV-Atom Interaction - Two Photons and Two Electrons: Double Ionization • XUV-Pump – XUV-Probe Experiments - Pulse Characterization via Autocorrelation - “Watching” the Decay of Excited Molecules - Charge Rearrangement in Dissociating Molecules • XUV-Pump – THz-Probe - Towards few fs Time-Resolution Free-Electron Lasers (FEL's) Light pulses that are • very intense (1016 W/cm2 and more), • very short (10 fs), • very energetic (10 eV…10,000 eV). AR S n o t o h P n i n o i t u l o ev ! ! e c cien Working principle: A moving charge (electron) emits radiation => Synchrotron Coherently emitting charges act like a laser => FEL Light-sources: Synchrotrons and FEL’s First (accidental) observation in 1947 General Electric Research Lab. NY. Test of a 70 MeV Synchrotron accelerator for electrons. Unexpected losses of energy: „Schwinger"-radiation Synchrotron radiation Lorentz transformation Rest frame Laboratory frame (fast electron v ≈ c) (slow electron v << c) θ = 1/γ = moc2/E θ = 0.64 mrad (6.4 mm spot after 10 m) for 800 MeV electrons (v = 0.9999998.c) Synchrotron radiation dN/dt [1/s] broad frequency spectrum ω < 3.γ3.ωo ; ωo = c/R 1013 Radiation from dipole magnet (bending radius R) 1011 Ee = 800 MeV Ie = 200 mA R=2m 109 0.1 1 10 λ (nm) 100 1000 Wigglers & Undulators B-field: few Tesla period: few cm number: 10...100 gap: cm Θ = 1/γ α K = α / Θ = α.γ ~ B.λu for K < 1 coherent superposition => Undulator for K > 1 non-coherent addition => Wiggler caution: not necessarily constructive interference the "good” ones From Synchrotron-Radiation to FEL-Light Bunch with Ne electrons Undulator Synchrotron-Radiation N ee N ≈ ≈ tityy i s s n IInntteen From Synchrotron-Radiation to FEL-Light Bunch with Ne electrons Undulator L ≈ 30 m FEL-Radiation tityy i s n s IInntteen 22 ≈≈NNee Self Amplified Spontaneous Emission (SASE) From Synchrotron-Radiation to FEL-Light FLASH Undulator Length: 27 m Beam Energy: 1 GeV From Synchrotron-Radiation to FEL-Light FEL 7 orders of magnitude! Lasers HHG From Synchrotron-Radiation to FEL-Light • FLASH: 2005 • LCLS: 2009 • Japan: 2011 • FERMI: 2012 • XFEL: 2016 The European X-FEL : 2016 • intensity: ~ 1013 . . . 1021 W/cm2 • photon energies: ~ 200 . . . 10.000 eV The European X-FEL : 2016 3 .5 km Driving vision: Imaging of Bio-Molecules • X-FEL, DESY • LCLS, SLAC • SACLA, Japan - 1013 photons - 10 keV - 10 fs pulse X-ray image ~1021 W/cm2 Hajdu, Chapman Measure before destruction ! The Free-Electron Laser at Hamburg (FLASH) • Intensity: • Photon energy: • Pulse length: • Rep. rate: ~ 1013 . . . 1017 W/cm2 ~ 20 . . . 250 eV ~ 30 . . . 200 fs ~ 300 Hz . . . (30 kHz) Reaction Microscope at FLASH nd a -1-111 toorrrr)) and ((<<1100 -9t torr) !!!! m u u vaaccuum <10 -9 torr) nntt v e l l e tsts((<10 c e e l x l g r EExce lute ta e targ i e d t u y l i r d vveery Reaction Microscope at FLASH Outline Part 2: Atoms and Molecules in Intense XUV Fields • Free-Electron Lasers - Working Principle and Parameters • Non-Linear XUV-Atom Interaction - Two Photons and Two Electrons: Double Ionization • XUV-Pump – XUV-Probe Experiments - Pulse Characterization via Autocorrelation - “Watching” the Decay of Excited Molecules - Charge Rearrangement in Dissociating Molecules • XUV-Pump – THz-Probe - Towards few fs Time-Resolution Two-Photon Double Ionization of He direct transition He0 → He++ 0 e2 Ehν = 44 eV -40 I ≈ 1014 W/cm2 1s2 -80 Energy (eV) e1 Helium Two-Photon Double Ionization of He direct transition total cross section (theory) He0 → He++ 0 e2 Ehν = 44 eV I ≈ 1014 W/cm2 ring ? a h s y g r e n Electron e tion ? la e r r o c r Angula 1s2 P. Antoine et al., PRA 78 (2008) -40 -80 Energy (eV) e1 Helium Two-Photon Double Ionization of He Photo-Ionization e1 e2 Ion momentum pion Two-Photon Double Ionization of He Ion momentum pion Photo-Ionization e1 e2 pion = -Σpe Two-Photon Double Ionization of He Ion momentum pion Photo-Ionization e1 e2 pion = -Σpe ε One photon: He1+ Two-Photon Double Ionization of He Photo-Ionization Synchrotron ε hν > 80 eV e1 e2 pion = -Σpe ε E = 44 eV I ≈ 1014 W/cm2 , Tpuls ≈ 25 fs Two photons: He2+ One photon: He1+ Two-Photon Double Ionization of He Photo-Ionization Synchrotron ε hν > 80 eV e1 e2 pion = -Σpe ε Two photons: He2+ One photon: He1+ Two-Photon Double Ionization of He Photo-Ionization Synchrotron ε hν > 80 eV e1 e2 pion = -Σpe ε Two photons: He2+ One photon: He1+ Two-Photon Double Ionization of He Photo-Ionization Synchrotron ε hν > 80 eV e1 e2 pion = -Σpe ε Two photons: He2+ One photon: He1+ Two-Photon Double Ionization of He Photo-Ionization Synchrotron ε hν > 80 eV e1 e2 pion = -Σpe ε Theory A. Kheifets Two photons: He2+ 1+2+ One Two photon: photons:He He Two-Photon Double Ionization of He Photo-Ionization Synchrotron ε hν > 80 eV e1 e2 pion = -Σpe ε Theory E. Foumouo & B. Piraux Two photons: He2+ Two photons: He2+ Two-Photon Double Ionization of He Photo-Ionization Synchrotron ε hν > 80 eV e1 e2 pion = -Σpe ε Theory C. W. McCurdy et al. Two photons: He2+ 2+ 2+ One photon: He Two photons: He Two-Photon Double Ionization of He total cross section (theory) 44 eV 52 eV 57 eV D. Horner et al., PRA 76 030701 (R) (2007) Two-Photon Double Ionization of He He++ 44 eV He+ 1s2 direct 52 eV sequential He++ 57 eV He+ 1s2 D. Horner et al., PRA 76 030701 (R) (2007) Two-Photon Double Ionization of He 44 eV 44 eV 52 eV 2 52 eV Py [au] 1 0 57 eV -1 -2 -2 -1 0 1 2 Px [au] D. Horner et al., PRA 76 030701 (R) (2007) Two-Photon Double Ionization of He Theory: J. Feist et al, 2010 D. Horner et al, 2010 Theory folded with exp. resol. tatatutuss: : s t n e s s e r t PPresen ililaabblele!!!! a v a is a y v ssiningg!!!! is m ••TThheeoorry is a e r is a atal lddaatata are m t n e m i r n e ••EExxpperime M. Kurka et al., New J. Phys. 12 (2010) Outline Part 2: Atoms and Molecules in Intense XUV Fields • Free-Electron Lasers - Working Principle and Parameters • Non-Linear XUV-Atom Interaction - Two Photons and Two Electrons: Double Ionization • XUV-Pump – XUV-Probe Experiments - Pulse Characterization via Autocorrelation - “Watching” the Decay of Excited Molecules - Charge Rearrangement in Dissociating Molecules • XUV-Pump – THz-Probe - Towards few fs Time-Resolution XUV-Pump – XUV-Probe setup Split Mirror FEL-pulse delay Goal What happens with a (small) molecule after ionization (excitation)? “Watch” the dynamical evolution (electrons and nuclei)! Scales: • Time in the order of 10 – 100 fs • Excitation energies from 10 – 100 eV (XUV) Approach: • Use intense fs XUV pulses • Pump-probe experiments excitation Aim: • Dynamics and structure • High temporal resolution What XUV Intensity is needed ?? Consider a single molecule (cross-section σ): Probability to excite (pump) and/or probe the molecule: • Do both steps with at least 10% efficiency !! Ppump ≈ Pprobe Intesity = σ ⋅ ⋅ T pulse ≈ 0.1 hν What XUV Intensity is needed ?? Consider a single molecule (cross-section σ): Probability to excite (pump) and/or probe the molecule: • Do both steps with at least 10% efficiency !! Ppump ≈ Pprobe Intesity = σ ⋅ ⋅ T pulse ≈ 0.1 hν 13 22 (for σ = 1 Mb) 13 Intensity ≈ 10 W/cm Intensity ≈ 10 W/cm (for σ = 1 Mb) We don’t want to pump molecule A and probe molecule B !! => only one molecule at a time (very dilute gas-target) First Step: Characterization of FEL Pulses e- eIonization of an atom (non-linear detector) e- Ionization yield Autocorrelation trace => Pulse length 0 delay Remarks about the FLASH Pulse Structure Remarks about the FLASH Pulse Structure 8.0E-5 Simulated pulses based on: • Spectral shape • Pulse duration 7.0E-5 6.0E-5 5.0E-5 4.0E-5 3.0E-5 2.0E-5 1.0E-5 0.0E+0 -50.0 -40.0 -20.0 0.0 20.0 40.0 50.0 time [fs] T. Pfeifer at al., Optics Lett. 35 (2010) Remarks about the FLASH Pulse Structure 2.2E-5 Simulated pulses based on: • Spectral shape • Pulse duration 2.0E-5 1.7E-5 1.5E-5 1.2E-5 1.0E-5 7.5E-6 5.0E-6 2.5E-6 0.0E+0 -50.0 -40.0 -20.0 0.0 20.0 40.0 50.0 time [fs] T. Pfeifer at al., Optics Lett. 35 (2010) Remarks about the FLASH Pulse Structure 6.0E-5 Simulated pulses based on: • Spectral shape • Pulse duration 5.0E-5 4.0E-5 3.0E-5 2.0E-5 1.0E-5 0.0E+0 -50.0 -40.0 -20.0 0.0 20.0 40.0 50.0 time [fs] T. Pfeifer at al., Optics Lett. 35 (2010) Remarks about the FLASH Pulse Structure 1.0E-4 Simulated pulses based on: • Spectral shape • Pulse duration 8.0E-5 6.0E-5 4.0E-5 2.0E-5 0.0E+0 -50.0 -40.0 -20.0 0.0 20.0 40.0 50.0 time [fs] T. Pfeifer at al., Optics Lett. 35 (2010) Remarks about the FLASH Pulse Structure 3.0E-5 Simulated pulses based on: • Spectral shape • Pulse duration 2.5E-5 2.0E-5 1.5E-5 1.0E-5 5.0E-6 0.0E+0 -50.0 -40.0 -20.0 0.0 20.0 40.0 50.0 time [fs] T. Pfeifer at al., Optics Lett. 35 (2010) Remarks about the FLASH Pulse Structure 3.0E-5 Simulated pulses based on: • Spectral shape • Pulse duration 2.5E-5 2.0E-5 1.5E-5 1.0E-5 5.0E-6 0.0E+0 -50.0 -40.0 -20.0 0.0 20.0 40.0 50.0 time [fs] T. Pfeifer at al., Optics Lett. 35 (2010) Remarks about the FLASH Pulse Structure 7.0E-5 Simulated pulses based on: • Spectral shape • Pulse duration 6.0E-5 5.0E-5 4.0E-5 3.0E-5 2.0E-5 1.0E-5 0.0E+0 -50.0 -40.0 -20.0 0.0 20.0 40.0 50.0 time [fs] T. Pfeifer at al., Optics Lett. 35 (2010) Remarks about the FLASH Pulse Structure 4.5E-5 4.5E-5 Simulated pulses 4.0E-5 based 3.5E-5 on: • 3.0E-5 Spectral shape • 2.5E-5 Pulse duration 4.0E-5 3.5E-5 3.0E-5 2.5E-5 2.0E-5 1.5E-5 1.0E-5 2.0E-5 coherence length 5.0E-6 average pulse length 0.0E+0 -50.0 -40.0 1.5E-5 1.0E-5 -20.0 0.0 20.0 40.0 50.0 time [fs] 5.0E-6 0.0E+0 -50.0 -40.0 -20.0 0.0 20.0 40.0 50.0 time [fs] T. Pfeifer at al., Optics Lett. 35 (2010) Non-linear Autocorrelation (38 eV, FLASH) Multiple Ionization of N2 in Pump-Probe 4th order Autocorrelation (n=4 photon transition) 40 40 ±10 ±10 fs fs 55 ±1 ±1 fs fs Y. Jiang et al., PRA 82 (2010) T. Pfeifer at al., Optics Lett. 35 (2010) Non-linear Autocorrelation (38 eV, FLASH) Multiple Ionization of N2 in Pump-Probe EExxaam mppllee:: aavv.. ppulse th ulse l4leennorder Autocorrelation g t h g ≈ t h 44transition) 0 ccoohheerenc (n=4 photon ≈ rencee lleenngth 0 ffss gth ≈≈ 55 ffss K. Meyer et al., PRL 108 (2012) T. Pfeifer at al., Optics Lett. 35 (2010) “Typical” Autocorrelation Traces @ FLASH Multiple Ionization of Argon (28 eV) High electron-bunch charge (~ 0.4 nC) aavveerraagge pulse e pulsele lennggth th≈≈220000 fs fs Low electron-bunch charge (~ 0.1 nC) average averagepulse pulselength length≈≈80 80fs fs Pump – Probe with D2 60 Probe 40 Energy (eV) D+ + D+ Pump 1/R 30 20 1sσg D2+ 10 0 D2 0 1 2 R (a.u.) 3 4 KER 50 Eph = 38 eV Pump – Probe with D2 Eph = 38 eV delay (fs) 60 10 20 30 40 50 60 Probe 80 25 20 D+ + D+ Pump 40 KER 50 Energy (eV) 70 15 10 1/R 5 30 KER (eV) 20 1sσg D2+ 10 0 D2 0 1 2 3 4 R (a.u.) Y. Jiang et al., PRA 81 (2010) Pump – Probe with D2 Eph = 38 eV delay (fs) 60 10 20 30 40 50 60 70 80 Probe 20 D+ + D+ Pump 40 KER 50 15 10 1/R 5 30 20 1sσg D2+ 10 Yield Energy (eV) 25 0 0 D2 0 1 2 3 10 20 30 40 delay (fs) 4 R (a.u.) Y. Jiang et al., PRA 81 (2010) 50 60 70 80 Pump – Probe with D2 Eph = 38 eV delay (fs) 60 10 20 30 40 50 60 70 80 Probe 25 20 50 15 10 1/R 5 30 20 1sσg D2+ 10 Yield Energy (eV) 40 KER ! n ! o i n t o o i t m o r m a r e l a c e l u c n u f n o f n o o i n t o a i t v r a e v r s e b s o b t o c t e r c i D Dire D+ + D+ Pump 0 0 D2 0 1 2 3 10 20 30 40 delay (fs) 4 R (a.u.) Y. Jiang et al., PRA 81 (2010) 50 60 70 80 Pump – Probe with D2 Eph = 38 eV delay (fs) 10 20 30 40 50 60 70 80 25 KER 20 15 10 Yield 5 0 Calculation with δ probe-pulse (F. Martin) 10 20 30 40 delay (fs) 50 60 70 80 Pump – Probe with D2 Eph = 38 eV delay (fs) 10 20 30 40 50 60 70 80 25 KER 20 15 10 Yield 5 0 5 fs pulses a simple model K. Meyer et al., PRL 108 (2012) 10 20 30 40 delay (fs) 50 60 70 80 Pump – Probe with D2 Eph = 38 eV delay (fs) 10 20 30 40 50 60 70 80 25 KER 20 15 10 Yield 5 0 40 fs pulses a simple model K. Meyer et al., PRL 108 (2012) 10 20 30 40 delay (fs) 50 60 70 80 Pump – Probe with D2 Eph = 38 eV delay (fs) 10 20 30 40 50 60 70 80 25 20 Yield KER 15 ! n ! o i n t o u l i t o u l s o e r s 10 e s r e s n i e f n e i f d e h d t g h t n ! 5 g e l ? n ! e e s l ? c L n e s E c e L F r n E e e y F r h a e r o y h a C x r o h C x t i h w t i n w o i t n u o i l t o u s l e o r s e d r n d o n c e o c s e o t s t AAtto 0 40 fs “spiky” pulses a simple model K. Meyer et al., PRL 108 (2012) 10 20 30 40 delay (fs) 50 60 70 80 Outline Part 2: Atoms and Molecules in Intense XUV Fields • Free-Electron Lasers - Working Principle and Parameters • Non-Linear XUV-Atom Interaction - Two Photons and Two Electrons: Double Ionization • XUV-Pump – XUV-Probe Experiments - Pulse Characterization via Autocorrelation - “Watching” the Decay of Excited Molecules - Charge Rearrangement in Dissociating Molecules • XUV-Pump – THz-Probe - Towards few fs Time-Resolution Decay of an Excited Molecule (Cluster) From atom to molecule 60 eV 2p 2s 1s Ne atom Decay of an Excited Molecule (Cluster) From atom to molecule 2p 2s 1s Ne+ ion Fluorescence photon (time: pico…nanoseconds) Decay of an Excited Molecule (Cluster) From atom to molecule 2p 2p 2s 1s 2s Fluorescence photon (time: pico…nanoseconds) Ne+ ion 1s Ne atom Very (infinitely) large distance Decay of an Excited Molecule (Cluster) From atom to molecule 2p 2p 2s 2s 1s 1s Ne+ ion Ne atom Few atomic radii Decay of an Excited Molecule (Cluster) From atom to molecule 2p 2p 2s 2s 1s 1s Ne+ ion Neon Ne atom dimer Few atomic radii Decay of an Excited Molecule (Cluster) Interatomic Coulombic Decay (ICD) From atom to molecule First theoretical prediction in 1997 2p 2s 2p 2s • First exp. observation in 2003 1s (Marburger et al. PRL 90,1s Jahnke et al. PRL 93) • More than 200 publications on ICD • Dominant channel in all Van-der-Waals and Hydrogen-bonded systems (water). Neon dimer • Source of low-energy electrons in tissue => radiation damage. • ICD lifetime is notradii measured !! Few atomic Decay of an Excited Molecule (Cluster) From atom to molecule goal: goal: decay-time decay-time of of ICD ICD in in Ne Ne22 !!!! 2s 1s 2p method: method: 2s XUV-XUV XUV-XUV pump-probe pump-probe 1s 2p prediction nonuclear nuclearmotion motion): ): prediction (theory, (theory, no 85 85 fs fs Santra Santra&&Cederbaum, Cederbaum,JCP JCP115 115(2001) (2001) 168 fs &&Cederbaum, 168 fs Vaval Vaval Cederbaum,JCP JCP126 126(2007) (2007) Neon dimer Few atomic radii Interatomic Coulombic Decay (ICD) Ne2+ / Ne+ Ne+ / Ne Ne+ / Ne+ Ne / Ne Ne2 Interatomic Coulombic Decay (ICD) Ne2+ / Ne+ Ne+ / Ne pump 1 photon Ne+ / Ne+ Ne / Ne Ne2 Interatomic Coulombic Decay (ICD) Ne2+ ICD pump 1 photon / Ne+ Ne+ / Ne Ne+ / Ne+ Ne / Ne Ne2 Interatomic Coulombic Decay (ICD) probe 1 photon Ne2+ ICD pump 1 photon / Ne+ Ne2 2+ ++ 2+ // Ne Creation of Ne Creation of Ne Ne Ne+ / Ne only only after after ICD ICD has has happened happened => => / Ne+ Ne+ 2+ + Increase Increase of of Ne Ne2+ // Ne Ne+ yield yield with pump-probe delay delay time. time. Newith / Ne pump-probe Interatomic Coulombic Decay (ICD) probe 1 photon KER vs. delay for Ne2+ / Ne+ pairs Ne2+ / Ne+ ICD pump 1 photon Ne+ / Ne Ne+ / Ne+ KER: Ion kinetic energies Ne / Ne Interatomic Coulombic Decay (ICD) First First m meeaassuurreem meenntt ooff IIC CD D llififeettiim mee !! Yield of Ne2+ / Ne+ pairs TICD = 150 ± 50 fs K. Schnorr et al., PRL 111 (2013) Interatomic Coulombic Decay (ICD) Comparison with theory (S. Scheit, V. Averbukh) FFuuttuurree s m e t s s y s m e r t e s g y r s a l r t e a g r h a l w t e a m h o w s e s m d r o a s w s TTooward s r e t s u s l r c e t r s e t u l a c w r ee..gg.. wate Outline Part 2: Atoms and Molecules in Intense XUV Fields • Free-Electron Lasers - Working Principle and Parameters • Non-Linear XUV-Atom Interaction - Two Photons and Two Electrons: Double Ionization • XUV-Pump – XUV-Probe Experiments - Pulse Characterization via Autocorrelation - “Watching” the Decay of Excited Molecules - Charge Rearrangement in Dissociating Molecules • XUV-Pump – THz-Probe - Towards few fs Time-Resolution Multiple Ionization of Atoms Photon energy: hν ν ~90 eV Intensity: 2×1015 W/cm2 hν Xenon Giant or shape resonance in Xe ee- 4d 5s,p Andersen et al. J. Phys. B 34, 2009 (2001) Multiple Ionization of Xe From Atoms to Molecules: Xe => Iodine Goal: Radiation damage (multiple ionization and fragmentation of molecules, Iodine as model system) Photon energy: hν ν ~90 eV Intensity: 2×1015 W/cm2 Xenon ee- Iodine (I2) e e- 4d 5s,p 4d 5s,p R(t) ee- Multiple Ionization of Xe 85 eV ~ 1014 W/cm2 5+ 4+ 3+ 2+ 6+ 1+ 7+ Multiple Ionization of Xe and Iodine 85 eV ~ 1014 W/cm2 Time of flight ion2 (ns) Single FEL pulse I5++I4+ I5++I3+ 5+ I6++I4+ 4+ 3+ 2+ 6+ n o ti rp o s b n A o l a ti ti rp n o e s u b q A SSeequential ! s n to o h 7+ P ! 5 s 1 n to to o p h u P f oof up to 15 1+ I4++I4+ I7++I6+ I5++I5+ I6++I6+ I8++I7+ I7++I7+ Time of flight ion1 (ns) Multiple Ionization of Dissociating Iodine XUV-XUV pump–probe Q1Q2 =3 =2 =1 Potential energy V [eV] ... 100 2 Q1 ⋅ Q2 pion V≈ = = Ekin 2M R 80 iodine (I2) 60 e- ee- e- 40 eeee- 4d 5s,p R(t) 20 0 5 I2 equilibrium bond length 10 15 20 25 Internuclear distance [a.u.] 30 Multiple Ionization of Dissociating Iodine Kinetic energy release (KER) [eV] I2+/I2+ coincidence channel 30 intermediate state(after pump) 20 2+/2+ (21.8 eV) 10 1+/2+(10.9 eV) 1+/1+ (5.4 eV) 0 -2000 -1500 -1000 -500 20 0 500 1000 1500 2000 I1+/I2+ coincidence channel 1+/2+(10.9 eV) 10 0 -2000 -1500 -1000 -500 20 0 500 1000 1500 2000 I1+/I1+ coincidence channel 10 1+/1+ (5.4 eV) 0 -2000 -1500 -1000 -500 0 500 1000 1500 2000 Time delay [fs] Multiple Ionization of Dissociating Iodine Kinetic Energy Release KER [eV] I3+/I4+ coincidence channel 100 intermediate state(after pump) 80 3+/4+ 60 3+/3+ 40 2+/3+ 20 1+/2+ 0 -2000 -1500 -1000 -500 0 500 Time delay [fs] 1000 1500 2000 Multiple Ionization of Dissociating Iodine Kinetic Energy Release KER [eV] I1+/I4+ coincidence channel intermediate state(after pump) 100 80 'hole': no counts near time overlap 60 40 1+/4+ 20 1+/2+ 0 -2000 -1500 -1000 -500 0 500 Time delay [fs] 1000 1500 2000 Multiple Ionization of Dissociating Iodine Over-Barrier (OVB) Charge Transfer H. Ryufuku, K. Sasaki, and T. Watanabe, PRA 21, 745 (1980) A. Niehaus, J. Phys. B 19, 2925 (1986) I1+ I4+ e- e- R Over-Barrier (OVB) Charge Transfer H. Ryufuku, K. Sasaki, and T. Watanabe, PRA 21, 745 (1980) A. Niehaus, J. Phys. B 19, 2925 (1986) I1+ I4+ e- e- R I1+ e- I4+ e- Multiple Ionization of Dissociating Iodine I1+/I3+ coincidence channel Kinetic Energy Release KER [eV] 30 over-barrier transfer 'hole': channel closed 20 OVB-model 10 0 30 experiment 20 10 0 -2000 -1500 -1000 -500 0 500 1000 1500 2000 Time delay [fs] Multiple Ionization of Dissociating Iodine Quantitative Comparison critical Rc (a.u.) 16 OVB model experiment 14 ••th rtantnt porta impo ng””isisim ming “timi thee“ti ininmu tionn izatio ioniza ltipleleion multip 12 an andd gg lon ted bu tri dis re e ar s lon ron ct ted bu ••ele tri dis re e ar s ron elect ))! ! ion los xp nn(e tio cia so dis ion re los fo xp be (e tio cia so before dis 10 8 3 4 5 6 charge pairs (1,Q) The FEL and Laser Group at the MPIK G. Schmid P. Cörlin A. Sperl K. Schnorr L. Fechner A. Fischer N. Camus M. Schönwald A. Senftleben C.D. Schröter (now Uni. Kassel) MSc & BSc Students: A. Krupp J. Kunz A. Broska … Thanks to: Max-Planck-Institute, Heidelberg Y. Jiang, M. Kurka, B. Knape, K. Meyer, C. Kaiser, J. Ullrich, T. Pfeifer MPQ, Garching M. Kübel, M. Kling… (Former) ASG of MPG, Hamburg A. Rudenko, L. Foucar, D. Rolles, R. Boll, D. Anielski… Tohoku University,Sendai K. Ueda… DESY FEL-group N. Stojanovic, A. Al-Shemmari, R. Treusch, S. Düsterer, M. Gensch, G. Brenner, …. and many more …
© Copyright 2025 ExpyDoc