Jessica Gwyther Characterisation of Plasticised Nitrocellulose using NMR and Rheology 2 Project Aims • Prepare 5 inert PBX binder formulations using nitrocellulose polymer and a series of nitroaromatic plasticiser • Characterisation of formulations that form gels • Investigation of the molecular dynamics of the small plasticiser molecules in the NC matrix using NMR • Characterisation of bulk physical properties of the binders using rheological measurements. Binder Formulations 3 NC + a) ethylbenzene (EB) b) mononitroethylbenzene (MNEB) c) dinitroethylbenzene (DNEB) d) trinitroethylbenzene (TNEB) e) K10 (DNEB (65%) TNEB (35%)) Film Gel Gel Solid Gel O NO 2 O * O 2 NO O 2 NO O NO 2 O * O O O NO 2 O NO 2 n NC EB MNEB DNEB 65% 35% K10 TNEB 4 Binder Formulations EB + NC MNEB + NC K10 + NC TNEB + NC DNEB + NC Rheology – Amplitude Sweep • Oscillation expt. Stress sweep at constant frequency to find linear viscoelastic region and good signal. K10 G' K10 G" MENB G' MNEB G" 100000 DNEB G' DNEB G" Modulus / Pa 5 10000 1000 100 0.01 0.1 1 10 100 Stress / Pa • • G’ greater than G” for each gel – more Elastic than viscous. Relative ‘rigidity’ of gels: DNEB + NC < K10 + NC < MNEB + NC rigidity Rheology – Oscillation at Elevated Temperatures G' 25oC 10000 G' 25oC 1000000 G" 25oC G'' 25oC G' 60oC G' 80oC G" 60oC G" 80oC Modulus / Pa 100000 10000 1000 1000 100 0.001 0.01 0.1 1 10 100 0.001 100 0.01 0.1 1 Freq / Hz Freq / Hz DNEB + NC binder MNEB + NC binder 100000 G' 25oC G'' 25oC G' 80oC G" 80oC Modulus / Pa Modulus / Pa 6 10000 1000 100 0.001 0.010 0.100 Freq / Hz K10 + NC binder 1.000 10.000 100.000 10 100 Rheology – Oscillation at Sub-ambient Temperatures G' 25oC 1000000 G'' 25oC G' 25oC 100000 G" 25oC G' -20oC G" -20oC Modulus / Pa Modulus / Pa G' -20oC G" -20oC 100000 10000 10000 1000 1000 100 0.00 0.01 0.10 1.00 10.00 100 0.001 100.00 0.01 0.1 1 10 100 Freq / Hz Freq / Hz MNEB binder Modulus / Pa 7 DNEB binder 1.00E+09 G' 25oC G'' 25oC 1.00E+08 G' -10oC G" -10oC 1.00E+07 G' -20oC G" -20oC • Large G’ and G” at -20oC for K10 binder. • Possible phase transition. 1.00E+06 1.00E+05 1.00E+04 1.00E+03 1.00E+02 0.001 0.010 0.100 1.000 Freq / Hz K10 binder 10.000 100.000 8 Modulus versus Temperature Plot at 0.01 Hz MNEB binder G' 1.00E+08 MNEB binder G" DNEB binder G' DNEB binder G" K10 Binder G' 1.00E+07 K10 Binder G" Modulus / Pa 1.00E+06 1.00E+05 1.00E+04 1.00E+03 1.00E+02 -20 -10 0 10 20 30 T / oC 40 50 60 70 80 Time-temperature Superposition 80oC 5.0 60oC 40oC 4.5 25oC 4.0 Log G' 9 10oC 3.5 0oC 3.0 -10oC 2.5 2.0 1.5 -4.0 -2.0 0.0 2.0 4.0 6.0 Log reduced freq •Good overlay of oscillation data for all gels M Doi and S. F. Edwards, The Theory of Polymer Dynamics •Rheology dominated by NC not small molecule plasticiser •Evidence of highly concentrated solution of entangled polymer, not cross linked gel Creep Recovery • Stress applied to sample and strain measured. • Stress is removed after being applied for a time. • If no flow has occurred = strain gradually recovers to zero. • If some flow has occurred = strain does not recover to zero. 8.0E-02 25oC 35oC Minimum viscosity: 7.0E-02 η= σ ∂γ / ∂t 40oC 50oC 60oC 70oC 80oC T / oC Min. η x 105 / Pas 25 13.1 35 9.57 40 7.37 3.0E-02 50 3.93 2.0E-02 60 1.63 70 0.78 80 0.25 6.0E-02 5.0E-02 γ/ Pa-1 10 4.0E-02 1.0E-02 0.0E+00 0 100 200 300 400 Time / s Creep recovery plot for K10 binder 500 600 700 11 NMR – T2 of Gels T2 is a time constant which is related to molecular dynamics by: τc 1 =A + Bτ c 2 T2 1 + ω 2τ c τc = Molecular Correlation Time ω is the Larmor frequency and A and B are constants. Liquids ω2 τc2 <<1 Solids ω2 τc2 >>1 Aromatic protons Aliphatic and NC protons 1 = ( A + B )τ c T2 1 = Bτ c T2 Spectrum K10 + NC gel K10 (DNEB + TNEB) < DNEB ≤ MNEB Molecular Mobility 12 NMR – Diffusion of Gels • Pulse Field Gradient (PFG) NMR used to find translational diffusion co-efficient ω = γBo • Larmor equation: • Bo spatially homogeneous, ω same throughout sample • However, if in addition to Bo magnetic field gradient applied… …Larmor frequency varies with position and becomes a spatial label. NMR – Diffusion Gels • Whole molecule has same diffusion coefficient • Relative ordering of gels according to D: K10 (DNEB + TNEB) < DNEB < MNEB Stack plot of (consistent with T2) 14 -21.00 2.80E-03 2.90E-03 3.00E-03 3.10E-03 3.20E-03 3.30E-03 3.40E-03 -21.50 -22.00 K10 + NC MNEB + NC DNEB + NC • 12 10 8 6 4 2 0 -2 -4 ppm between 25oC – 80oC R2 = 0.9987 -23.00 R2 = 0.9959 -23.50 -24.00 R2 = 0.9981 -24.50 -25.00 1/T / K-1 K10 + NC binder Diffusion expt’s repeated -22.50 ln D 13 • Arrhenius plots 14 Conclusions • Three formulations formed gels. • Bulk Properties: - Rheological properties of the gels dominated by NC polymer • Molecular Dynamics: - T2 and diffusion coefficients of small molecules within gels. - Increasing molecular mobility with decreasing molecular size. - Molecular dynamics dominated by small molecule plasticisers. • Evidence that gels are concentrated solutions of entangled polymer, not cross linked gels. 15 Acknowledgements • AWE – Dr. Paul Deacon • Prof. Terence Cosgrove and Dr. Roy Hughes • Polymers at Interfaces Group – Dr. Youssef Espidel • Bristol Colloid Centre – Dr. Cheryl Flynn
© Copyright 2025 ExpyDoc