Broken Symmetries and the FQHE in graphene

Capri Spring School 2014
Broken Symmetries
and the FQHE in graphene
Allan MacDonald
The University of Texas at Austin
Inti Sodemann
(PRL – 2014)
Fengcheng Wu
Rohit Hegde
Yasufumi Araki
Thierry Jolicoeur
DOS
Ordered States – Stoner Instability
d
Band Width
vs.
Exchange Energy
s
DOS
E
µ
QHF- Stoner-Criterion
Maude et al. PRB (2005)
QHF
Stoner-Criterion is Rigorous
Additional Degrees-of-Freedom
+
Bilayer Excitonic
Superfluidity
| á 〉
|↓〉
Spontaneous Interlayer Phase Coherence =
Excitonic Superfluidity =
Pseudospin Ferromagnetism
|Ψ〉0 = Πi (| á 〉i + ei φ | ↓ 〉i )
Counterflow Drag
Eisenstein – Nature (2012)
Exciton Superflow – in pictures
e
T Le
TR
e B Lh
BR
e
Counterflow Drag
Su & AHM
Nature Phys. (2008)
Neutral Graphene in a
Magnetic Field
Neutral Graphene in a
Magnetic Field
Charge Density Wave
Neutral Graphene in a
Magnetic Field
Spin Density Wave
Neutral Graphene in a
Magnetic Field
Spin Hall State
SU(4) Generators
Wu et al.
Surprising FQHE
4/3, 5/3
strong
Bolotin et al., Du et al. Nature (2009)
Feldman et al. Science (2012)
Skrymion in 2D O(3) Ferromagnet
Sondhi et. al. PRB 1993
Skyrmions at ν = 1/3 ?
Palacios & AHM PRB ‘98
Δ=0.10
Gap/(e2/l)
(Qe,Qh)=(0,0)
(Qe,Qh)=(1,0)
(Qe,Qh)=(1,1)
B ≈ 10 Tesla
(Qe,Qh)=(2,1)
Δ=0.04
Δ(g=0) ≈ 0.01 to
0.02
g=0.06
Coulomb & Short-Range
Energy Scales
Jung PRB (2009)
Kharitonov PRB (2012)
Short-Range Interactions
Phase Diagrams
Two-Component ν = 1/3
SU(4) Generators
Wu et al.
SO(5) Order Parameter
Neutral Graphene
vs.
Cuprates
Exact Diagonalization
Bilayer AB stacking
A2
B2
A1
B1
π = πx+iπy
=perturbation
A
B
N=8 Quantum Hall Ferromagnets
= LL (0,1)
= layer
= spin
A
B
FQHE: Papic and Abanin arXiv:1307.2909
Electronic XY Ferroelectric
n=1
n=0
=
n=1
=
+
n=0
=
electric
dipole moment
Capri Spring School 2014
Broken Symmetries
and the FQHE in graphene
Allan MacDonald
The University of Texas at Austin