IMTEK powerpoint template 2008: Version 2 of the first slide Biochip-Technologies T. Brandstetter Content • Materials and surface modifications (09.05.14) • Manufacturing of Biochips (23.05.14) • Biochip technologies – Between research and routine diagnostics (state of the art, 06.06.14) • Nucleic acid based techniques (27.06.14) • Biochips for protein analytics (04.07.14) • Other applications (11.07.14) • Summary (18.07.14) www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 2 Our profile Research and teaching • • 22 faculties • highly interdisciplinary world of microsystem technology 300 researchers and technicians IMTEK and industry • • Many industrial cooperations MSTBw Core competences of CPI • Preparation of surfaces with tailor-made properties • Topological and chemical micro structuring of surfaces • • AFM Biochip-technologies www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 3 Biochip-technologies http://portal.uni-freiburg.de/cpi/biochip-group-dr-brandstetter www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 4 Biochips – what are they?(1) • devices that can contain anywhere from tens to tens of millions of individual sensor elements (or biosensors) • The sensors are packed together into a package typically the size of a microscope slide. Because so many sensors can be put into such a small area, a huge number of distinct tests can be done very rapidly. • Biochips are often made using the same microfabrication technology used to make microchips. Unlike microchips, however, biochips are generally not electronic (although they can be). • The key premise behind biochips is, that they can do chemistry on a small scale. Each biosensor can be thought of as a "microreactor“, which does chemistry designed to sense a specific analyte. www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 5 Biochips – what are they?(2) • Biosensors can be made to sense a wide variety of analytes, including DNA, protein, antibodies, and small biological molecules. • Fluorescence is often used to indicate a sensing event. Automated microscopy systems can be used to "read" the chip, i.e. determine which sensors are fluorescing • Most biochips are 2D arrays of sensors placed carefully in a grid arrangement. The position of the sensor on the chip determines its function. • To place the sensors in precise coordinates, sophisticated and expensive microdeposition techniques are used. The sensors are essentially placed one at a time, or serially, on the chip. www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 6 Biochips – what are they?(3) HPV_3D_Katrin_N_30s_Cy5 substrat dot HPV 6 3 8 13 microarray www.imtek.de/cpi http://en.wikipedia.org/wiki/Biochip#History T. Brandstetter/ 09.05.2014 / slide 7 Manufacturing of biochips – in general(1) 1. Untreated slide mixed analyte solution 2. Microarray printing 3. Immobilisation www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 8 Manufacturing of biochips – in general(2) step1: print polymer mixed with DNA step 3: hybridisation and readout step 2: photocrosslinking via UV-irradiation C OH www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 9 Materials and surface modifications www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 10 Biochip materials (1) Microscope slide of glass Commercial microscope glass slides • Silica (SiO2) + vitreous silica • Sodium carbonate (Na2CO3) + soda-lime-silicate glass • Limestone (CaCO3) + borosilicate glass-pyrex • Magnesium Carbonate (MgCO3) + aluminosilicate glass + borosilicate glass Detailled information Frontiers in biochip technology by Wan-Li Xing, Jing Cheng Edition: illustrated Published by Birkhäuser, 2006 ISBN 0387255680, 9780387255682 357 pages www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 11 Biochip materials (2) Microscope slide of plastic Commercial plastic slides • PMMA (polymethymethacrylate) + PMMA • Polystyrene + Polystyrene • COC (cyclic olefin copolymer) + TOPAS • Polycarbonate + Polycarbonate • Polypropyrene + Polypropyrene Lab Chip, 2007, 7, 856 - 862, DOI: 10.1039/b700322f www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 12 Biochip coatings directly chemically modified surfaces • In situ synthesis on glass + activated glass by poly-carbodiimide, aminosilane, aldehyde • Silanizated probes on unmodified glass + graft coating polymers on silicon (glass) • Photocrosslinking on unmodified plastic + plastic-based DNA microarrays using carbodiimide chemistry + amine-modified PMMA substrates + activated polystyrene, polypropyrene, polycarbonate (PC) • S.A. Fodor, R. Rava, X.C. Huang, A.C. Pease, C.P. Holmes and C.L. Adams. Science 251 (1991) 767–773. • M.J. Moorcroft, W.R. Meuleman, S.G. Latham, T.J. Nicholls, R.D. Egeland and E.M. Southern. NAR, 2005, Vol. 33, e75. • N. Kimura, R. Oda, Y. Inaki and O. Suzuki. Nucleic Acids Research, 2004, Vol. 32, e68. • H.-Y. Wang,R.L. Malek,A.E. Kwitek,A.S. Greene,T.V. Luu,B. Behbahani,B. Frank,J. Quackenbush, N.H. Lee, Genome Biol. 4 (2003), R5. • M. Dufva, S. Petronis, L.B. Jensen, C. Krag and C.B. Christensen. Biotechniques 37 (2004) 286–292, 294, 296. • A. Kumar, O. Larsson, D. Parodi, Z. Liang, Nucleic Acids Research, 2000, Vol. 28, e98. • M. Schena, D. Shalon, R.W. Davis, P.O. Brown, Science 270 (1995), 467–470. • De Paul S. M., Falconnet D., Pasche S., Textor M., Abel A. P., Kauffmann E., Liedtke R. and Ehrat M.. Anal. Chem. 2005, 77, 5831-5838. • Johnson P. A., Gaspar M. A. and Levicky R. J. Am. Chem. Soc., 2004, 126, 9910-9911. • N. Kimura, T. Nagasaka, J. Murakami, H. Sasamoto, M. Murakami, N. Tanaka and N. Matsubara. Nucleic Acids Research, 2005, Vol. 33, e46. www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 13 2D chips using SAMs (self assembled monolayers) typical DNA-chip design: sequence of the probe polyT(thymine) tailer adapted from: E. Southern, K. Mir, M. Shchepinov, Nature Gen., 27 (1999) 5 Weakness: + reproducibility (why is acceptance of microarrays below expectations in non-research areas? + sensitivity + surface properties www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 14 A „skyscraper“-approach 2D attachment of oligonucleotide probes 3D polymer brushes “polymer layer” – approach allows to improve the sensitivity adjust properties of the surface (hydrophilicity, reactivity) 3D polymer networks www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 15 Functional polymer monolayers growth of polymers on surfaces chemisorption of polymers blockcopolymers via macroinitators grafting of polymers on plasma modified surfaces photochemical attachment of polymers www.imtek.de/cpi surface-attached polymer networks T. Brandstetter/ 09.05.2014 / slide 16 „grafting in between“ Photochemistry of benzophenone triplet formation upon n,* excitation biradical reacts with C,H bonds H C C 350 nm nm 265 C O C O C OH = 100 µ s hydrogen abstraction C www.imtek.de/cpi C OH recombination T. Brandstetter/ 09.05.2014 / slide 17 Toomey R., Freidank D. and Rühe J.. Swelling Behavior of Thin, Surface-Attached Polymer Networks. Macromolecules, Vol. 37, 2004, 882-887. Polymer networks attached to polymeric substrates photocrosslinkable overcoat Me simultaneous crosslinking Me N O and surface attachment Me via pendant benzophenone units O O polymeric substrate (e.g. polyurethane) O swelling in water (2h) ~ 1 mm ca. 20 µm www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 18 Microstructuring in biochip technologies, two procedures I. Contact printing Print pins http://www.anopoli.com/ http://www.anopoli.com/ www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 19 Printhead Microstructuring in biochip technologies, contact printing www.imtek.de/cpi Omnigrid from GeneMachine® Contact printing procedure 65% humidity, RT Steel or tungsten needle with reservoir droplet volume 400 – 600 pl droplet diameter 140 – 200 µm Process variance > 10% T. Brandstetter/ 09.05.2014 / slide 20 Microstructuring in biochip technologies, contact printing Pin heads make the difference. Split pin •Uptake volumes : 0.25µl to 0.64 µl Solid pin •Spot diameters : 75µm to 450 µm www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 21 http://www.anopoli.com/ •Spot diameters : 75µm to 215 µm Microstructuring in biochip technologies, contact printing Printing with different, not aqueous, solutions is possible. PDMAA(Polydimethylmetacrylate) 200 µm printing medium: ethanol www.imtek.de/cpi PS (Polystyrene) printing medium: toluene T. Brandstetter/ 09.05.2014 / slide 22 Microstructuring in biochip technologies, contact printing Spot diameter is not really controllable. Split pin Solid pin Printing of 0.25 µm Cy5-labelled oligo-DNA in 400 mM Napi and 1mg/ml PDMAA-co-5%MABP-co2,5%VPA www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 23 Microstructuring in biochip technologies, contact printing scale lining PDMAA layer PMMA (5 mg/ml) lining Printing medium toluene exposure after photocrosslinkage www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 24 Microstructuring in biochip technologies, contact printing 1. copolymers 2. buffer PDMAA-co-5%MABP-co-2,5%VPA (a) 400 mM Napi (b) 200 mM Napi/3xSSC/0.75 M betaine plastic/PMMA a. 3. PT-6000 tungsten glass/Epoxy b. a. b. 2D 2D_04_04_07_P2Ds.1a 2D_16_04_07_P2Dsp.2a a. 3D b. a. b. 3D 3D_12_04_07_P3Dsp.11a www.imtek.de/cpi 2D_04_04_07_N2Ds.4a 2D_16_04_07_N2Dsp.4b 3D_03_04_07_P3Ds.11 3D_12_04_07_N3Dsp.2a T. Brandstetter/ 09.05.2014 / slide 25 3D_03_04_07_N3Ds.4a Microstructuring in biochip technologies, contact printing 1. copolymers 2. buffer PDMAA-co-5%MABP-co-2,5%VPA (b) 200 mM Napi/3xSSC/0,75 M betaine glass/Epoxy b. a. b. 2D 2D 2D_xx_04_07_P2Ds.x 2D_16_04_07_P2Dsp.2a a. 3D PT-6000 tungsten (a) 400 mM Napi plastic/PMMA a. 3. b. 2D_xx_04_07_N2Ds.x 2D_16_04_07_N2Dsp.4b a. b. 3D 3D_12_04_07_P3Dsp.11a www.imtek.de/cpi 3D_xx_04_07_P3Ds.x 3D_12_04_07_N3Dsp.2a T. Brandstetter/ 09.05.2014 / slide 26 3D_xx_04_07_N3Ds.x Microstructuring in biochip technologies, contactless printing II. Contactless printing/Piezo Electric Dispenser http://www.scienion.de www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 27 Microstructuring in biochip technologies, contactless printing II. Piezo Electric dispenser Piezo www.imtek.de/cpi Electric dispenser(Scienion AG®) Contactless printing procedure 65% humidity, RT droplet volume 410 pl, droplet diameter 175 µm droplet volume and diameter is adjustable Process variance < 10% T. Brandstetter/ 09.05.2014 / slide 28 Microstructuring in biochip technologies, contactless printing Photos after print 2D 3D 2D = printing with PBS without polymer 3D = printing with PBS 1 mg/ml PDMAA-co5%MABP-co-2,5%VPA www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 29 3D Microstructuring in biochip technologies, contactless printing Droplet stacking 1mg/ml polymer in distilled water PSS = Polystyrenesulfanit PMMA = Polymethylmetacrylate Small droplet with 10x Large droplets with 20x Photo after print PSS www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 30 PMMA Microstructuring in biochip technologies, contactless printing “donut”-structuring 1mg/ml PDMAA-co5%MABP-co-2,5%VPA in PBS Exposure after wash with PBS and 0.1% (v/v) Tween) www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 31 Dot morphology, how to analyze? Dot morphology, depending on surface properties print solution contact angle analyte concentration Dot morphology, analyzed by AFM Fluorescence microscope Raster electron microscope www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 32 Microstructuring in biochip technologies, contactless printing Printing with additives, avoiding “donut”-morphology 1mg/ml PDMAA-co-5%MABPco-2,5%VPA in PBS Additive Glycerol Photo after print 0 www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 33 2.5 5 10 25%(v/v) Microstructuring in biochip technologies, contactless printing Printing with/withoutTrehalose 1mg/ml PDMAA-co-5%MABP -co-2,5%VPA in PBS 125 mg/ml Trehalose (T) in PBS +T -T “Donut”-structure without Trehalose +T -T Homogeneity in the dot morphology, using Trehalose http://en.wikipedia.org/wiki/Trehalose α-D-glucopyranosyl α-Dglucopyranoside(α,α‐Trehalose) www.imtek.de/cpi Exposure with a fluorescence microscope T. Brandstetter/ 09.05.2014 / slide 34 Printing on microstructured surfaces 500 µm www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 35 Microstructuring in biochip technologies Micronas Biochip technlogy Piezo www.imtek.de/cpi Electric dispenser(Scienion AG®) Contactless printing procedure 80% humidity, RT droplet volume 390 pl, photodiode diameter 180 µm printing on structured surfaces Process variance < 10% T. Brandstetter/ 09.05.2014 / slide 36 Microstructuring in biochip technologies Micronas Biochip technlogy Piezo Electric dispenser(Scienion AG®) printing directly on a photodiode 180 µm www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 37 Microstructuring in biochip technologies Micronas Biochip technlogy Piezo Electric dispenser(Scienion AG®) printing directly on a photodiode pattern matching using a software printed not printed www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 38 Microstructuring in biochip technologies, summary Piezo Electric dispenser (Scienion AG®) Contactless printing procedure Droplet volume control Droplet diameter tunable (>100µm) Printing only with aqueous solutions 1mg/ml polymer Process variance < 10% Omnigrid from GeneMachine® Contact printing procedure Steel or tungsten needle with reservoir droplet volume 400 – 600 pl droplet diameter approx. 200 µm Printing of different solutions > 1mg/ml polymer possible Process variance > 10% www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 39 Thank you for your attention! http://www.bilder-welten.net/de/produkt_detail.php?id=23019&catid=1623 www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 40 Literature • • • • • • • • • • • • • • E. Southern, K. Mir, M. Shchepinov, Nature Gen., 27 (1999) 5 Frontiers in biochip technology, by Wan-Li Xing, Jing Cheng, Edition: illustrated, published by Birkhäuser, 2006, ISBN 0387255680, 9780387255682, 357 pages Lab Chip, 2007, 7, 856 - 862, DOI: 10.1039/b700322f S.A. Fodor, R. Rava, X.C. Huang, A.C. Pease, C.P. Holmes and C.L. Adams. Science 251 (1991) 767–773. M.J. Moorcroft, W.R. Meuleman, S.G. Latham, T.J. Nicholls, R.D. Egeland and E.M. Southern. NAR, 2005, Vol. 33, e75. N. Kimura, R. Oda, Y. Inaki and O. Suzuki. Nucleic Acids Research, 2004, Vol. 32, e68. H.-Y. Wang,R.L. Malek,A.E. Kwitek,A.S. Greene,T.V. Luu,B. Behbahani,B. Frank,J. Quackenbush, N.H. Lee, Genome Biol. 4 (2003), R5. M. Dufva, S. Petronis, L.B. Jensen, C. Krag and C.B. Christensen. Biotechniques 37 (2004) 286–292, 294, 296. A. Kumar, O. Larsson, D. Parodi, Z. Liang, Nucleic Acids Research, 2000, Vol. 28, e98. M. Schena, D. Shalon, R.W. Davis, P.O. Brown, Science 270 (1995), 467–470. De Paul S. M., Falconnet D., Pasche S., Textor M., Abel A. P., Kauffmann E., Liedtke R. and Ehrat M.. Anal. Chem. 2005, 77, 5831-5838. Johnson P. A., Gaspar M. A. and Levicky R. J. Am. Chem. Soc., 2004, 126, 9910-9911. N. Kimura, T. Nagasaka, J. Murakami, H. Sasamoto, M. Murakami, N. Tanaka and N. Matsubara. Nucleic Acids Research, 2005, Vol. 33, e46. Toomey R., Freidank D. and Rühe J.. Swelling Behavior of Thin, Surface-Attached Polymer Networks. Macromolecules, Vol. 37, 2004, 882-887. www.imtek.de/cpi T. Brandstetter/ 09.05.2014 / slide 41
© Copyright 2024 ExpyDoc