11 Marie Christine Birling

GENERATION of CRE‐ERT2 TRANSGENIC MOUSE LINES FOR TIME AND CELL SPECIFIC CONDITIONAL GENE INACTIVATION Marie‐Christine Birling
Institut Clinique de la Souris, Strasbourg
1
Why a creERT2 resource?
1. Inactivation of the 2 copies is lethal for 33% of the genes
2
Why a creERT2 resource?
1. Inactivation of the 2 copies is lethal for 33% of the genes
2. Study the function of a gene
1. In a specific organ/ cell populations
2. In the adult
3
The ICS CreERT2 zoo
o 43 lines characterized or under characterization
http://www.ics‐mci.fr/mousecre
4
A standardized characterization (i)
Line generated by pronuclear injection (PNI) of mainly BAC –
creERT2
5
∼250 lines; 50 projects
Specificity of Cre expression
(RT‐qPCR)
1. RT‐qPCR high throughput screen
Specificity of endogenous gene expression
(RT‐qPCR)
2. Extensive analysis of best line
Cre activity at the anatomic level (lacZ staining)
A standardized characterization (ii)
Line generated by pronuclear injection (mainly BAC transgenes)
∼250 lines; 50 projects
1. RT‐qPCR high throughput screen
2. Extensive analysis of best line
For some projects
3. Additional characterization
4. Publications
6
Ins1‐creERT2
Specificity of Cre expression (RT‐qPCR)
High level in pancreas
Low level in brain
7
Ins1‐creERT2
Ins1‐creERT2 x Rosa26‐ loxSTOPlox‐LacZ
Female 60 (tam)
IHC Cre Abcam
antibody x40
LacZ staining x10
8
Female 144 (tam)
Male 35 (oil)
Ins1‐creERT2
After Tamoxifen injection IHC cre antibody
Pancreas ‐ Islets of Langerhans
triple IHC staining
Somatostatin
(purple)
Cre protein (brown)
lacZ staining on Rosa26 reporter line
9
Glucagon (pink)
Ins1‐creERT2
Fact: the Rat Insulin Promoter (RIP)‐Cre mice display glucose intolerance
(Lee et al., 2006)
Glucose tolerance test under chow diet
Intraperitoneal injection of sterile‐filtered D‐glucose (2g/kg of fasted body weight)
Rat insulin I
Promoter‐ Cre
Rat insulin I Promoter‐ Cre
C57BL/6
Published data
C57BL/6
RIP‐Cre
C57BL/6
ICS data
Question : Is the Ins1‐CreERT2 line glucose intolerant?
10
Lee et al., “RIP‐Cre revisited, evidence for impairments of pancreatic b‐cell function.”J Biol Chem, 2006
Ins1‐creERT2
Answer: No!
Glucose tolerance
test under chow diet
No effect of the construction in glucose tolerance test
11
Note: We observe no relevant difference between Ins1‐creERT2 mice and WT mice treated with the vehicle
Ins1‐creERT2
Conclusion
ƒ
Efficiency of Cre expression and Cre mediated excision is highly specific
ƒ
Brain: lacZ is negative but is Soriano Rosa26Neo‐lacZ a good reporter ?
ƒ
The Ins1‐creERT2 line seems specific to β‐cells
ƒ
Our line does not present the RIP‐cre phenotype under chow diet
ƒ
There is no diabetes onset in Ins1‐creERT2 mice treated or not with tamoxifen
=> The Ins1‐CreERT2 model is validated
12
Gcg‐creERT2
Plasmid transgene
Cre expression
RT-qPCR
Additional characterization:
Immunohistochemistry
Female
13
Male
Testis
Pancreas
Liver
Duodenum
Ovary
Pancreas
Liver
Duodenum
Relative level
Cre antibody
Glucagon antibody
Male / tam injection
Ela1‐creERT2
chymotrypsin-like elastase family, member 1
BAC transgene
Cre expression Endogenous gene (RT‐qPCR)
Symatlas data
14
Ela1‐creERT2
Additional characterization: Cre immunohistochemistry
Tam injection
Pancreas x 40
(Novagen antibody)
Wax embedded tissues
15
Ins1‐creERT2 Gcg‐creERT2
TAM
Ela1‐creERT2 TAM
=> An inducible Cre line for 3 cell types of the mouse pancreas
16
TAM
A comparative study
Ubiquitous CreERT2 lines
Characterization by breeding with the Soriano Rosa26Neo‐lacZ
reporter: Cre activity at the anatomical level
„
„
„
17
PPM1a‐CreERT2 (BAC transgene)
Rosa‐CreERT2 (Hameyer et al., 2007) Rosa‐ERT2‐iCre‐ERT2 (Jullien et al., 2008)
A comparative study:
Ubiquitous CreERT2 lines
Specificity of Cre expression (RT‐qPCR)
18
Ubiquitous creERT2 lines
Efficiency of Cre mediated excision at the cellular level (breeding by the Rosa26Neo‐lacZ reporter)
Aorta
Heart
Liver
Pancreas Colon
Kidney
Skin
Testis
Ppm1a‐
creERT2
Aorta :+
Adipose tissue: ++ Ventricle: +
+++(+)
+ (patchy/
mosaic)
Muscularis
propria : +
Mucosa : + (patchy/mosaic)
Cortical :+++
Medullar:+++
Papilla:++++
Epidermis:+++
Basal cells:++
Dermis:+
Hair follicle:+++
Sebaceous gland:+
Seminiferous
tubule: ++
Rosa26‐
creERT2
Aorta :‐/+
Adipose tissue: ‐/+
Ventricle:
+
+++(+)
+ (patchy/ mosaic)
Muscularis
propria : ‐
Mucosa : ‐/+
Cortical :+
Medullar:+(+)
Papilla:+++
Epidermis:+++
Basal cells:++
Dermis:‐
Hair follicle:+++
Sebaceous gland:+
Seminiferous
tubule: +
ERT2‐cre‐
ERT2
Aorta:+
Adipose tissue:+
Ventricle: +/‐
+++
+ (patchy/
mosaic)
Muscularis
propria : +
Mucosa : + (patchy/mosaic)
Cortical :‐/+
Medullar:+
Papilla:++
Epidermis:++
Basal cells:+
Dermis:+
Hair follicle:++
Sebaceous gland:+
Seminiferous
tubule: ++
19
Ppm1a creERT2 line
IHC with anti‐Ppm1a and anti‐Cre after Tamoxifen induction Ppm1a‐CreERT2 activity avec breeding with Rosa26Neo‐lacZ
Skin
Liver
Muscle
IHC Ppm1a
IHC Cre
(Novagen antibody)
Good co‐localization of the CreERT2 with the endogenous protein
LacZ staining on Ppm1a‐CreERT2 X Rosa Neo‐Lac
20
Lydie Venteo
Ppm1a creERT2 line
Conclusion
The Ppm1a‐CreERT2 line is at least as efficient as the Rosa‐
CreERT2 and Rosa‐ERT2‐iCre‐ERT2 lines after Tamoxifen
induction in the adult mouse.
•Globally higher mRNA expression
•Better excision rate on the Rosa Neo‐LacZ reporter line
•Good co‐localization of the CreERT2 protein with the endogenous Ppm1a protein
•No leaking (no Cre mediated excision) observed in the absence of Tamoxifen
21
Myh6‐CreERT2
‐myosin, heavy polypeptide 6, cardiac muscle, alpha ‐BAC construct
‐cardiac muscular cells
Specificity of Cre expression Endogenous gene (RT‐qPCR)
22
Myh6‐CreERT2
http://www.ics-mci.fr/mousecre/results/histo?subline_id=252
23
Adipoq‐CreERT2
adiponectin, C1Q and collagen domain containing
Human BAC transgene
Specificity of Cre expression Endogenous gene (RT‐qPCR)
24
Adipoq‐CreERT2
Line validated, very little leaking observed
25
The flow scheme
Line generated by pronuclear injection (PNI) of a BAC –
creERT2
∼250 lines; 50 projects
1. RT‐qPCR high throughput screen
2. Extensive analysis of best line
3. Database
4. distribution (EMMA)
26
4. Distribution following
email contact:
[email protected]
Please visit our new website http://www.ics‐mci.fr/
A CENTRE OF EXCELLENCE FOR MOUSE FUNCTIONAL GENOMICS
HERAULT Yann
ALI‐HADJI Dalila
AMANN Grégory
ANDRE Philippe
AUBURTIN Aurélie
AUGE Fabrice
AYADI Abdelkader
BAM'HAMED Chaouki
BANQUART‐OTT Nadine
BECKERJulien
BEDU Elodie
BIRLING Marie‐
Christine
BLONDELLE Eric
BOUR Raphaël
BRIGNON Sophie
BUNZ Isabel
CARADEC Claudia
27
CAYROU Pauline
CES Aurélia
CHAMPY Marie‐France
CHARLES Philippe
CHARTOIRE Nathalie
CHEBBOUB Djaouida
COMBE Roy
DEBOUZY Guillaume
DELANGLE Benoît
DIERICH Andrée
DING Thomas
DREYER Dominique
EL FERTAK Leila
EL FERTAK Lahcen
ENNAH Hamid
ERBS Valérie
FOUGEROLLE Jean‐
Victor
GOETZ REINER Patrice
GONCALVES DA CRUZ ‐
Isabelle
GRUBER Frédéric
GUIMOND Alain
HEMMERLE Mathieu
JACQUOT Sylvie
KUJATH Christelle
KURTZ Caroline
LAEUFER Laurent
LE MARCHAND Elise
LEBLANC Sophie
LECOCQ Muriel
LEGEAY Sandrine
LINDNER Loïc
LORENTZ Romain
LUPPI Laurence
MELLUL Peggy
MERTZ Annelyse
MEZIANE Hamid
MITTELHAEUSER Christophe
MOKNI Mourad
MONTIAL Marina
MORO Anne‐Isabelle
NAGRE Isabelle
OHLMANN Thierry
PAVLOVIC Guillaume
PENSAVALLE Joëlle
PETER Emilie
PETIT‐DEMOULIERE Benoît
PHAM THI BICH Hanh
POUILLY Laurent
QUEUCHE Danielle
RIET Fabrice
RIO‐ZENNER Fanny
ROTH Christelle
ROUSSEAU Valérie
ROUSSEAU Stéphane
SCHMITT Raphaël
SCHWOERER Marie‐
Jeanne
SEITZ Thierry
SELLOUM Mohammed
SORG‐GUSS Tania
TILLY Isabelle
TOUBARI Chadia
UZUN Ibrahim
VASSEUR Laurent
VENTEO Lydie
VINCENT Cindy
WAGNER Christel
WALCH Laëtitia
WALLERICH Sandrine
WEBER Bruno
WENDLING Olivia WETZSTEIN Eric
WIECROCK Cyrille
WIECROCK Ludovic
WOLTER Anne
ZANINELLO Fabienne
ZANINELLO Nathalie