Quantum Criticality, Emergent Phases and Strongly Correlated Electrons Qimiao Si Rice University Center for Quantum Materials QCM14, Quantum Critical Matter – from Atoms to Bulk, Obergurgl, Austria, Aug. 20, 2014 Jed Pixley, Jianda Wu, Emil Nica, Ang Cai, Wenxin Ding Pallab Goswami Rong Yu Stefan Kirchner Lijun Zhu Jian-Xin Zhu Kevin Ingersent (Rice University) (NHMFL, FSU) (Renmin U.) (MPI-PKS) (UC Riverside) (Los Alamos) (U. of Florida) S. Friedemann C. Geibel S. Wirth Erwin Schuberth O. Stockert F. Steglich J. Custers T. Sakakibara K.-A. Lorenzer S. Paschen A.M. Strydom K. Grube H. v. Löhneysen H. Yuan J. Singleton J. D. Thompson Quantum Criticality Quantum scaling: ξτ ~ ξ z Tr e -(/kT)H/ τ ~ / kTorder Torder TN Linear resistivity !∞ @QCP Thermodynamics near QCP Quantum scaling: ξτ ~ ξ =>Grüneisen ratio Linear divergent at QCP: resistivity TN L. Zhu, M. Garst, A. Rosch, & QS, PRL (2003) z Entropy Accumulation near QCP TN L. Zhu, M. Garst, A. Rosch, & QS, PRL (2003); J. Wu, L. Zhu & QS, JPCS (2011) Quantum critical points enhanced entropy unusual excitations; emergent phases J. Custers et al Linear resistivity TN CeRhIn5 SC T. Park et al N. Mathur et al H. v. Löhneysen et al Quantum Critical Points of Antiferromagnetic Heavy Fermions Quantum Criticality Beyond-Landau Quantum Criticality Inherent quantum modes, beyond order-parameter fluctuations Antiferromagnetic QCP Paramag. metal AF metal QCP δ Point of departure: • Spin fluctuations + fermions • Fate of local moments & Kondo effect • Kondo lattices: Heavy Fermi liquid: • Kondo entanglement No symmetry breaking, but macroscopic order Critical Kondo Destruction --Local Quantum Critical Point Critical Destruction of Kondo Entanglement at the onset of antiferromagnetic order QS, S. Rabello, K. Ingersent, & J. L. Smith, Nature 413, 804 (2001) P. Coleman et al, JPCM 13, R723 (2001) Kondo Destruction and Local Quantum Criticality: Dynamical Scaling • ω/T scaling in χ(q,ω,T) EDMFT -- collapsing Eloc* from paramagnetic side Kondo Destruction and Local Quantum Criticality: Dynamical Scaling Exponent α = 0.72-0.78 J-X Zhu, S. Kirchner et al PRL (2007) Glossop & Ingersent, PRL (2007) J-X Zhu, D Grempel & QS, PRL (2003) Cf. neutron scattering expts: A. Schröder et al., Nature (’00); M. Aronson et al, PRL Kondo Destruction and Local Quantum Criticality: Fermi Surface Reconstruction • Kondo-destruction energy scale • ω/T scaling in χ(q,ω,T) • Sudden reconstruction of Fermi surface Fermi Surface Jump and Kondo-Destruction Energy Scale in YbRh2Si2 Crossover: isothermal Hall coeff. T* Crossover width vs. T 2nd order transition across Bc S. Friedemann, N. Oeschler, S. Wirth, C. Krellner, C. Geibel, F. Steglich, S. Paschen, S. Kirchner, and QS, PNAS 107, 14547 (2010) S. Paschen et al, Nature (2004); P. Gegenwart et al, Science (2007) Fermi Surface Jump and Kondo-Destruction Energy Scale in YbRh2Si2 Crossover: Isothermal magnetostricton and magnetization P. Gegenwart, T. Westerkamp, C. Krellner, Y. Tokiwa, S. Paschen, C. Geibel, F. Steglich, E. Abrahams, and QS, Science 315, 969 (2007) S. Paschen et al, Nature (2004); S. Friedemann et al., PNAS (2010) Fermi Surface Jump and Kondo-Destruction Energy Scale in YbRh2Si2 Crossover: Isothermal magnetostricton and magnetization P. Gegenwart, T. Westerkamp, C. Krellner, Y. Tokiwa, S. Paschen, C. Geibel, F. Steglich, E. Abrahams, and QS, Science 315, 969 (2007) S. Paschen et al, Nature (2004); S. Friedemann et al., PNAS (2010) Jump of Fermi-surface – dHvA Measurements in CeRhIn5 2nd order transition across Pc P1 Pc Fermi surface jumps across Pc P1 Pc Mass tends to diverge at Pc H. Shishido, R. Settai, H. Harima, & Y. Onuki, JPSJ 74, 1103 (’05) Dynamical Kondo Effect Quasiparticle weight à 0 as the QCP is approached from both sides J-X Zhu, D. Grempel, QS, PRL (2003) QS & S. Paschen, Phys. Status Solidi (2013) Dynamical Kondo Effect P. Gegeneart et al., PRL (2002) Kondo Destruction in a Pnictide CeNiAsO Y. Luo, L. Pourovskii, S. Rowley, Y. Li, C. Feng, A. Georges, J. Dai, G. H. Cao, Z. A. Xu, QS, & N. P. Ong, Nat. Mater. 13, 777 (2014) Global Phase Diagram Opposite limit – when RKKY dominates over Kondo coupling what JK << I δ = JK / I Opposite limit – when RKKY dominates over Kondo coupling JK << I • JK=0 as the reference point of expansion: • f- local moments: AF, QNLσM • conduction electrons: Fermi volume “x” Quantum non-linear Sigma Model Representation Heisenberg model + coherent spin path integral QNLσM SBerry not important deep inside ordered phase When RKKY dominates: inside AF order JK << I • JK=0 as the reference point of expansion: • f- local moments: AF, QNLσM • conduction electrons: Fermi volume “x” S. Yamamoto & QS, PRL 99, 016401 (2007) • JK Exactly Marginal • Kondo destruction -- AFS phase Global Phase Diagram G: frustration, reduced dimensionaltiy, … In contrast to: single boundary a la Landau Q. Si, Physica B 378, 23 (2006); Phys. Status Solidi B247, 476 (2010) also, P. Coleman & A. Nevidomskyy, JLTP 161, 182 (2010) Global Phase Diagram J. Custers, R. Yu et al., Nat. Mater. (2012) E. D. Mun et al., PRB 87, 075120 (2013) Co & Ir-doped YbRh2Si2 (S. Friedemann et al, Nat Phys 2009) Shastry-Sutherland Lattice Yb2Pt2Pb (Kim & Aronson, PRL 2013) Kagome lattice CePdAl (V. Fritsch et al, PRB 2014) Mini-review: QS & S. Paschen, Phys. Status Solidi B250, 425 (2013) Global Phase Diagram G=J2/J1 J1 J2 filling x=0.5 Shastry-Sutherland lattice J. Pixley, R. Yu & QS, arXiv:1309.0581 (2013) Role of Berry Phase term in QNLσM Approach P. Goswami + QS, PRL 107, 126404 (2011) – One dimension; PRB 89, 045124 (2014) – 2D honeycomb lattice Role of Berry Phase term in QNLσM Approach Berry phase of local moments: è Singlet phases (Spin Peierls, …) Cond. electron spins locked to local moments: è Cancellation of Berry phase è Kondo singlet è Competition w/ spin peierls P. Goswami + QS, PRL 107, 126404 (2011) – One dimension; PRB 89, 045124 (2014) – 2D honeycomb lattice Superconductivity driven by Quantum Criticality Enhanced Pairing Correlation near Kondo-destruction QCP J. Pixley J. Pixley, L. Deng, K. Ingersent & QS, to be published (2014); J. Pixley, L. Deng, K. Ingersent & QS, arXiv:1308.0839 Superconductivity out of Fluctuating Fermi Surfaces P1 Pc SC Superconductivity near a Kondo-destruction QCP, with reconstructing and fluctuating Fermi surfaces Further Contexts Quantum Criticality in Iron Pnictides Proposal: QCP via P-substitution for As J. Dai, QS, J-X Zhu & E. Abrahams, PNAS 106, 4118 (’09) Quantum Criticality in Iron Pnictides K. Hashimoto et al, Science (’12) S. Kasahara et al, PRB 81, 184519 (’10) J. G. Analytis et al, Nat. Phys. (2014) BaFe2(As1-xPx)2 SUMMARY • Quantum criticality in heavy fermions – Kondo destruction • Emergent phases: – Global phase diagram – Superconductivity near Kondo-destruction QCP
© Copyright 2025 ExpyDoc