Modeling and Numerical Analysis of Partial Differential Algebraic Systems for the Simulation of Networks Caren Tischendorf Humboldt-Universität zu Berlin Elgersburg Workshop 2014 March 06, 2014 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Outline 1 What are PDAEs? 2 Applications 3 Modeling 4 Challenges 5 Numerical Simulation 6 Purely Imaginary Eigenvalues C. Tischendorf Modeling and Simulation with PDAEs Page 1/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues What are PDAEs? Differential-Algebraic Equation f (u 0 (t), u(t), t) = 0 with ∂ ∂y f (y , u, t) being singular. Example: u10 (t) = g1 (u1 (t), u2 (t), t) 0 = g2 (u1 (t), u2 (t).t) C. Tischendorf Modeling and Simulation with PDAEs Page 2/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Partial Differential-Algebraic Equations (PDAEs) ODE DAE + constraints PDE C. Tischendorf PDAE Modeling and Simulation with PDAEs Page 3/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Partial Differential-Algebraic Equations (PDAEs) ODE DAE + constraints PDE PDAE PDAE example: ut (x , t) = uxx (x , t) + v (x , t) 0 = g(u(x , t), v (x , t), x , t) C. Tischendorf Modeling and Simulation with PDAEs Page 3/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Why PDAEs? Why are we interested in PDAEs? C. Tischendorf Modeling and Simulation with PDAEs Page 4/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Applications water networks electronic circuits gas networks C. Tischendorf Modeling and Simulation with PDAEs blood circuit Page 5/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Modeling of Flow Networks network as a graph: C. Tischendorf Modeling and Simulation with PDAEs Page 6/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Modeling of Flow Networks network as a graph: C. Tischendorf Modeling and Simulation with PDAEs Page 6/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Modeling of Flow Networks network as a graph: q4 q9 q6 q8 q7 q3 q5 q2 q1 The currents qi flow along the branches. C. Tischendorf Modeling and Simulation with PDAEs Page 6/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Modeling of Flow Networks p5 p7 network as a graph: q4 q9 p6 p4 q3 q6 q5 p1 q1 q8 p8 q7 p3 q2 p2 The currents qi flow along the branches. At the nodes we have pressures/potentials pj . C. Tischendorf Modeling and Simulation with PDAEs Page 6/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Flow Balance at Each Node p5 p7 p6 −q1 − q5 = 0 q4 q9 p4 q3 q6 q5 p1 C. Tischendorf q1 q8 p8 q7 p3 q2 p2 q1 + q2 = 0 .. . −q3 − q4 + q6 − q7 = 0 .. . Modeling and Simulation with PDAEs q8 = 0 Page 7/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Flow Balance at Each Node p5 p7 p6 −q1 − q5 = qs1 q4 q9 p4 q3 q6 q5 p1 q1 q8 p8 q7 p3 q2 p2 q1 + q2 = qs1 .. . −q3 − q4 + q6 − q7 = qs4 .. . q8 = qs8 if sources and/or sinks exist C. Tischendorf Modeling and Simulation with PDAEs Page 7/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Flow Balance at Each Node p5 p7 p6 −q1 − q5 = qs1 q4 q9 p4 q3 q6 q5 p1 q1 q8 p8 q7 p3 q2 p2 q1 + q2 = qs1 .. . −q3 − q4 + q6 − q7 = qs4 .. . q8 = qs8 if sources and/or sinks exist Aq=qs C. Tischendorf Modeling and Simulation with PDAEs Page 7/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Flow Balance Equations for Networks AT q=qs The matrix A • describes the topology of the network • maps branches to nodes • has only entries -1, 0 and +1 The vector q consists of all branch currents. It contains • the electric currents i for electric/electronic networks • the water flows m for water networks • the gas flows q for gas networks C. Tischendorf Modeling and Simulation with PDAEs Page 8/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Model Extension So far, we implicitly assumed that the flow ql at the left node of a branch equals the flow qr at the right node of the same branch. q branch: nl C. Tischendorf nr Modeling and Simulation with PDAEs Page 9/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Model Extension So far, we implicitly assumed that the flow ql at the left node of a branch equals the flow qr at the right node of the same branch. q branch: nl nr Such a modeling is only sufficient if one can neglect the time delay of the flow along a branch. C. Tischendorf Modeling and Simulation with PDAEs Page 9/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Model Extension So far, we implicitly assumed that the flow ql at the left node of a branch equals the flow qr at the right node of the same branch. q branch: nl nr Such a modeling is only sufficient if one can neglect the time delay of the flow along a branch. In general, we need both, ql and qr as network variables. ql qr branch: nl C. Tischendorf Modeling and Simulation with PDAEs nr Page 9/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues General Flow Balance Equations for Networks Al ql + Ar qr =qs The matrix AL • maps left branch ends to nodes • has only the entries -1 and 0 Die Matrix AR • maps right branch ends to nodes • has only the entries +1 and 0 A = Al +Ar C. Tischendorf Modeling and Simulation with PDAEs Page 10/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Potential and Pressure Differences w=AT p The vector w reflects the potential/pressure differences. It contains • the electric voltages u for electric networks • water pressure differences h for water networks • gas pressure differences ∆p for gas networks The vector p consists of pressures/potentials. It contains • the electrostatic potentials e for electric networks • water pressures p for water networks • gas pressures p for gas networks C. Tischendorf Modeling and Simulation with PDAEs Page 11/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Modeling of Network Elements F(q,p,w,u,t)=0 for electric networks, e.g. • Ohmic resistances: w=Rq C. Tischendorf Modeling and Simulation with PDAEs Page 12/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Modeling of Network Elements F(q,p,w,u,t)=0 for electric networks, e.g. • Ohmic resistances: w=Rq d • capacitances: q=C dt w C. Tischendorf Modeling and Simulation with PDAEs Page 12/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Modeling of Network Elements F(q,p,w,u,t)=0 for electric networks, e.g. • Ohmic resistances: w=Rq d • capacitances: q=C dt w • diodes: q=q0 exp ( ww − 1) 0 C. Tischendorf Modeling and Simulation with PDAEs Page 12/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Modeling of Network Elements F(q,p,w,u,t)=0 for electric networks, e.g. • Ohmic resistances: w=Rq d • capacitances: q=C dt w • diodes: q=q0 exp ( ww − 1) 0 • transistors: q= R Γ [(Jn + Jp ) · ν χ1 − ε ∂t grad ψ · ν χ2 ] dσ Jn =qe (Dn grad n−µn n grad ψ) Jp =qe (−Dp grad p−µp p grad ψ) αψ+β grad ψ·ν=s(p) C. Tischendorf on Γ 1 −∂t n+ q div Jn =R(n,p,Jn ,Jp ) e 1 ∂t p+ q div Jp =−R(n,p,Jn ,Jp ) e div (ε grad ψ)=qe (n−p−N) Modeling and Simulation with PDAEs Page 12/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Example Circuit Equations Circuits with capacitors, inductors, resistors, voltage and current sources AC qC + AL qL + AR qR + AV qV + AI qI = 0 > > > > wC = A> C p, wL = AL p, wR = AR p, wV = AV p, wI = AI p qC = C. Tischendorf d d fC (wC ), wL = fL (qL ), qR = fR (wR ), wV = vset , qI = iset dt dt Modeling and Simulation with PDAEs Page 13/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Example Circuit Equations Circuits with capacitors, inductors, resistors, voltage and current sources MNA: AC qC + AL qL + AR qR + AV qV + AI qI = 0 > > > > wC = A> C p, wL = AL p, wR = AR p, wV = AV p, wI = AI p qC = C. Tischendorf d d fC (wC ), wL = fL (qL ), qR = fR (wR ), wV = vset , qI = iset dt dt Modeling and Simulation with PDAEs Page 13/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Example Circuit Equations Circuits with capacitors, inductors, resistors, voltage and current sources MNA: AC d fC (wC ) + AL qL + AR fR (wR ) + AV qV + AI iset = 0 dt > > > > wC = A> C p, wL = AL p, wR = AR p, wV = AV p, wI = AI p qC = C. Tischendorf d d fC (wC ), wL = fL (qL ), qR = fR (wR ), wV = vset , qI = iset dt dt Modeling and Simulation with PDAEs Page 13/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Example Circuit Equations Circuits with capacitors, inductors, resistors, voltage and current sources MNA: AC d fC (wC ) + AL qL + AR fR (wR ) + AV qV + AI iset = 0 dt > > > > wC = A> C p, wL = AL p, wR = AR p, wV = AV p, wI = AI p qC = C. Tischendorf d d fC (wC ), wL = fL (qL ), qR = fR (wR ), wV = vset , qI = iset dt dt Modeling and Simulation with PDAEs Page 13/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Example Circuit Equations Circuits with capacitors, inductors, resistors, voltage and current sources MNA: AC d > fC (A> C p) + AL qL + AR fR (AR p) + AV qV + AI iset = 0 dt > > > > wC = A> C p, wL = AL p, wR = AR p, wV = AV p, wI = AI p qC = C. Tischendorf d d > > fC (A> fL (qL ), qR = fR (A> C p), AL p = R p), AV p = vset , qI = iset dt dt Modeling and Simulation with PDAEs Page 13/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Example Circuit Equations Circuits with capacitors, inductors, resistors, voltage and current sources MNA: d > fC (A> C p) + AL qL + AR fR (AR p) + AV qV + AI iset = 0 dt d fL (qL ) A> Lp = dt A> V p = vset AC > > > wC = A> C p, wL = AL p, wR = AR p, wV = vset , wI = AI p d > qC = fC (A> C p), qR = fR (AR p), qI = iset dt C. Tischendorf Modeling and Simulation with PDAEs Page 13/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Modeling of Network Elements F(qL ,qR ,p,w,u,t)=0 for water networks, e.g. • reservoirs: p = p set d • tanks: C dt p= qs C. Tischendorf Modeling and Simulation with PDAEs Page 14/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Modeling of Network Elements F(qL ,qR ,p,w,u,t)=0 for water networks, e.g. • reservoirs: p = p set d • tanks: C dt p= qs • pipes: ∂t p + a∂x q = 0 ∂t q + b∂x p + c|q|q + d = 0 p(nl ) = pnl , C. Tischendorf p(nr ) = pnr , q(nl ) = ql , Modeling and Simulation with PDAEs q(nr ) = qr Page 14/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Example Water Network Equations water network with pipes and reservoirs APl ql + APr qr = qset pR = pset ∂t p + a∂x q = 0 ∂t q + b∂x p + c|q|q + d = 0 p(nl ) = pnl , C. Tischendorf p(nr ) = pnr , q(nl ) = ql , Modeling and Simulation with PDAEs q(nr ) = qr Page 15/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Modeling of Network Elements F(qL ,qR ,p,w,u,t)=0 for gas networks, e.g. • valves: q=qL =qR = g(w, t) C. Tischendorf Modeling and Simulation with PDAEs Page 16/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Modeling of Network Elements F(qL ,qR ,p,w,u,t)=0 for gas networks, e.g. • valves: q=qL =qR = g(w, t) • pipes: ∂t % + ∂x q ∂t q + ∂x p + ∂x (%v 2 ) + gp∂x h p p(nL ) = pnL , C. Tischendorf p(nR ) = pnR , = 0 λ(q) %v |v | 2D = γ(T )z(p, T )% = − q(nL ) = qL , Modeling and Simulation with PDAEs q(nR ) = qR Page 16/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Modeling of Network Elements for blood circuits, e.g. systemic circuit Systemic Circuit Pulmonary Circuit [Danielsen, Ottesen 2004] C. Tischendorf Modeling and Simulation with PDAEs Page 17/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Modeling of Network Elements for blood circuits, e.g. heart chambers [Danielsen, Ottesen 2004] C. Tischendorf Modeling and Simulation with PDAEs Page 18/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Model Equations for Networks 1 flow balance at each node: AL qL + AR qR = 0 2 potential/pressure differences: w=AT p 3 element models: F(qL ,qR ,p,w,u,t)=0 Depending on the element models the resulting system represents a system of • linear/nonlinear equations • differential algebraic equations (DAEs) • partial differential algebraic equations (PDAEs) C. Tischendorf Modeling and Simulation with PDAEs Page 19/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Challenges for (P)DAEs • existence of solutions • uniqueness of solutions • stability • numerical methods (feasible, convergent and stable) • solver for the discretized PDAE • implementation of numerical methods (monolithic or co-simulation) • model order reduction • parameter optimization • uncertainty quantification • control C. Tischendorf Modeling and Simulation with PDAEs Page 20/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Weak Formulation of PDAEs generalized evolution equation approach 0 A∗ [Du(t)] + B(u(t), t) = r (t) f.a.a. t ∈ I Du(t0 ) = z0 ∈ Z • real Banach spaces V , Z , evolution triple Z ⊆ H ⊆ Z ∗ • D : V → Z surjective, A = T D • B : V × I → V∗ solution space 0 W21 (I, V , Z , H) = u ∈ L2 (I, V ) ∃ [Du(t)] ∈ L2 (I, Z ∗ ) C. Tischendorf Modeling and Simulation with PDAEs Page 21/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Unique Solvability I 0 A∗ [Du(t)] + B(u(t), t) = r (t) f.a.a. t ∈ I Du(t0 ) = z0 ∈ Z is uniquely solvable [T. 2004, Matthes 2012] on W21 (I, V , Z , H) if • B : V × I → V ∗ strongly monotone, satisfies growth condition • r ∈ L2 (I; V ∗ ) Drawback: Coupled systems often do not lead to a strongly monotone operator B C. Tischendorf Modeling and Simulation with PDAEs Page 22/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Unique Solvability II d Pm(Px (t)) + F (x (t), t) + PM(x (t), u(t), t) = 0, dt A(u(t)) − R(x (t)) = 0 t ∈ I, has a unique solution [Matthes 12] if • P ∈ Rn×n is orthoprojector and Q := I − P • the map Px 7→ Pm(Px ) is strongly monotone (on Im P) and ∈ C 1 • F : Rn × I → Rn is continuous and Lipschitz continuous w.r.t. x • The map φ : Im Q → Im Q with w 7→ QF (z + w , t) is bijective and φ−1 (z, t) is continuous and Lipschitz continuous w.r.t. z ∈ Im P, t ∈ I • A : V → V ∗ is strongly monotone and hemicontinuous on V • M : Rn × V → Rn is continuous and Lipschitz continuous w.r.t. x , u • R : Rn → V ∗ is Lipschitz continuous • (x (t0 ), u(t0 )) ∈ {(x , u) ∈ Rn × V | QF (x , t0 ) = 0, A(u) − R(x ) = 0} C. Tischendorf Modeling and Simulation with PDAEs Page 23/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Discretization of PDAEs ODE DAE spatial discretization parabolic PDE C. Tischendorf PDAE Modeling and Simulation with PDAEs Page 24/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Simple DAE Examples u10 (t) = u2 (t) + h(t) 0 = u1 (t) + u2 (t) + g(t) C. Tischendorf ⇒ u10 (t) = −u1 (t) − g(t) + h(t) u2 (t) = −u1 (t) − g(t) Modeling and Simulation with PDAEs Page 25/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Simple DAE Examples u10 (t) = u2 (t) + h(t) 0 = u1 (t) + u2 (t) + g(t) u10 (t) = u2 (t) + h(t) 0 = u1 (t) + g(t) C. Tischendorf ⇒ ⇒ u10 (t) = −u1 (t) − g(t) + h(t) u2 (t) = −u1 (t) − g(t) u2 (t) = −g 0 (t) − h(t) u1 (t) = −g(t) Modeling and Simulation with PDAEs Page 25/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Simple DAE Examples u10 (t) = u2 (t) + h(t) 0 = u1 (t) + u2 (t) + g(t) u10 (t) = u2 (t) + h(t) 0 = u1 (t) + g(t) ⇒ ⇒ u20 (t) = u3 (t) u10 (t) = u2 (t) + h(t) 0 = u1 (t) + g(t) C. Tischendorf u10 (t) = −u1 (t) − g(t) + h(t) u2 (t) = −u1 (t) − g(t) u2 (t) = −g 0 (t) − h(t) u1 (t) = −g(t) u3 (t) = −g 00 (t) − h0 (t) ⇒ u2 (t) = −g 0 (t) − h(t) u1 (t) = −g(t) Modeling and Simulation with PDAEs Page 25/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Simple DAE Examples Index 1 u10 (t) = u2 (t) + h(t) 0 = u1 (t) + u2 (t) + g(t) ⇒ u10 (t) = −u1 (t) − g(t) + h(t) u2 (t) = −u1 (t) − g(t) Index 2 u10 (t) = u2 (t) + h(t) 0 = u1 (t) + g(t) ⇒ u2 (t) = −g 0 (t) − h(t) u1 (t) = −g(t) Index 3 u20 (t) = u3 (t) u10 (t) = u2 (t) + h(t) 0 = u1 (t) + g(t) C. Tischendorf u3 (t) = −g 00 (t) − h0 (t) ⇒ u2 (t) = −g 0 (t) − h(t) u1 (t) = −g(t) Modeling and Simulation with PDAEs Page 25/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Perturbation Index u20 (t) = u3 (t) u10 (t) = u2 (t) + h(t) 0 = u1 (t) + g(t) C. Tischendorf Modeling and Simulation with PDAEs Page 26/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Perturbation Index u3 (t) = n2 ε cos(nt) − h0 (t) u20 (t) = u3 (t) u10 (t) = u2 (t) + h(t) ⇒ 0 = u1 (t) + ε cos(nt) ku1 − uδ1 k = ε, u2 (t) = nε sin(nt) − h(t) u1 (t) = −ε cos(nt) ku2 − uδ2 k = nε, ku3 − uδ3 k = n2 ε ill-posed problem ! C. Tischendorf Modeling and Simulation with PDAEs Page 26/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Perturbation Index u3 (t) = n2 ε cos(nt) − h0 (t) u20 (t) = u3 (t) u10 (t) = u2 (t) + h(t) ⇒ 0 = u1 (t) + ε cos(nt) ku1 − uδ1 k = ε, u2 (t) = nε sin(nt) − h(t) u1 (t) = −ε cos(nt) ku2 − uδ2 k = nε, ku3 − uδ3 k = n2 ε ill-posed problem ! ku − uδ k ≤ c (kδk + kδ 0 k + kδ 00 k) perturbation index 3 C. Tischendorf Modeling and Simulation with PDAEs Page 26/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues PDAE Discretization Approach: 1 spatial discretization 2 time discretization Goal: Find space discretizations yielding low index DAEs! C. Tischendorf Modeling and Simulation with PDAEs Page 27/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Spatial Discretization for Water Networks water networks with reservoirs and pipes: APl ql + APr qr = qset 1 −∂t A> Pl p + Da (qr − ql ) = 0 h 1 1 > ∂t qr + Db (A> Db A > Pr p + APl p) + c|qr |qr + d = R pset h h is a DAE system of index 1 if the direction of pipes is chosen as follows: 1 Each reservoir has only pipes directing away from the reservoir. 2 Each other node of the network has at least one pipe directing to this node. C. Tischendorf Modeling and Simulation with PDAEs Page 28/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Problems when Solving (P)DAEs • The algebraic constraints demand implicit or half-implicit methods. • The solution does not depend continuously on the input data (for higher index DAEs). • Initial values have to fulfil (hidden) constraints. • Numerical methods as implicit multistep or one-step methods may fail. • Simulation results may depend on the (P)DAE formulation. C. Tischendorf Modeling and Simulation with PDAEs Page 29/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Trouble when Simulating DAEs index 2 example [Gear, Petzold 86] x10 + ηtx20 + (1 + η)x2 = q1 x1 + ηtx2 = q2 unique solution: x2 = q1 − q20 x1 = q2 − ηtx2 numerical solution: The methods fail for parameter values η < −0.5. C. Tischendorf Modeling and Simulation with PDAEs Page 30/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Reformulation of the DAE equivalent formulation x10 + (ηtx )02 + x2 = q1 x1 + ηtx2 = q2 numerical solution: All methods work well for all parameter values. reason: The discretization method applied to the DAE yields to the same method for the inherent dynamical part [Higueras, März, T. 2004]. C. Tischendorf Modeling and Simulation with PDAEs Page 31/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Implementation Concept element models spatial discret. network equations time discretization ∂t f (y )+∂x g(y ) = h(y , t) ∂t f (y )+∆x g(y ) = h(y , t) f (d 0 (y , t), y , t) = 0 f (∆t d(y , t), y , t) = 0 net control parameters topological analysis name=”reg1”, sp=30, ... loops, connections, ... nonlinear system netlist parser initialization pipe, nodeL=”name1”, {n1, n2, ...}, homotopy providing y0 ..., L=93, ... {v 1, v 2, ...} F (y ) = 0 Newton type method yn = G(yn−1 ) linear system postprocessing Ay = b pressures p, flows q, ... C. Tischendorf output linear solver preconditioning y LU, QR, CG, hybrid, ... PAy = Pb Modeling and Simulation with PDAEs Page 32/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Coupled Circuit-EM Simulation The perturbation behavior (DAE index) depends on the choice of gauge conditions for the vector potential A [Baumanns 2012]. • Lorenz gauge: ∇ · A = 0 ⇒ index 2 d • Coulomb gauge: εµ dt ϕ + ∇ · A = 0 ⇒ index 0/1/2 cross coupling effects in high frequency circuits C. Tischendorf Modeling and Simulation with PDAEs Page 33/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Blood Circuit Simulation C. Tischendorf heart chambers blood flow blood pressure blood volume Modeling and Simulation with PDAEs Page 34/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Blood Circuit Simulation simulated aortic blood pressure: 117/82 mmHG (normal value) increase/decrease 50% incr. 50% incr. 50% incr. 50% decr. 50% decr. 50% decr. 50% incr.+decr. 25% incr.+decr. parameter R1 R2 R3 C1 C2 C3 R1 , R2 , R3 + C1 , C2 , C3 R1 , R2 , R3 + C1 , C2 , C3 blood pressure 126/83 119/86 118/85 181/87 140/92 127/90 194/137 146/104 C1 , R1 : compliance and resistance in aortic vessels C2 , R2 : compliance and resistance in arterioles C3 , R3 : compliance and resistance in capillaries C. Tischendorf Modeling and Simulation with PDAEs Page 35/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Purely Imaginary Eigenvalues for Circuits C. Tischendorf CuC0 = iC LiL0 = uL 0 = BC uC + BL uL + BR uR + BJ uJ + BV vs (t) 0 = QC iC + QL iL + QR iR + QJ js (t) + QV iV 0 = iR − GuR Modeling and Simulation with PDAEs Page 36/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Purely Imaginary Eigenvalues for Circuits CuC0 = iC LiL0 = uL 0 = BC uC + BL uL + BR uR + BJ uJ + BV vs (t) 0 = QC iC + QL iL + QR iR + QJ js (t) + QV iV 0 = iR − GuR Matrix Pencil C. Tischendorf λC 0 BC 0 0 0 −I BL 0 0 −I 0 0 QC 0 0 λL 0 QL 0 0 0 BR 0 G 0 0 0 QR −I 0 0 BJ 0 0 Modeling and Simulation with PDAEs 0 0 0 QV 0 Page 36/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Matrix Pencils Matrix Pencil (2) Matrix Pencil (1) λC 0 −I 0 −I 0 BC BL 0 0 0 Q C 0 0 0 0 0 0 0 λL 0 0 0 0 BR 0 BJ QL 0 QR 0 0 G −I 0 0 0 0 QV 0 λC 0 −I 0 0 0 0 −I 0 λL 0 0 Bˆ C Bˆ L 0 0 Bˆ R 0 ˆC Q ˆL 0 Q ˆR 0 0 Q 0 0 0 0 G −I Theorem Assume that a given circuit has neither V-loops nor I-cutsets. The spectrum of the matrix pencil (1) coincides with that of the pencil (2), provided that the latter is defined by the RLC circuit obtained after open-circuiting current sources and short-circuiting voltage sources. C. Tischendorf Modeling and Simulation with PDAEs Page 37/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Purely Imaginary Eigenvalues (PIEs) Proposition 1 Any eigenvector associated with a PIE verifies uR = iR = 0. Proof Idea 1. If (u, i) = (uC , uL , uR , iC , iL , iR ) is an eigenvector to a PIE λ then u ∗ i = (Q T w )∗ i = w ∗ Qi = 0, since Bu = 0 and Ker B = Im Q T . 2. Including the element related equations yields ¯ L∗ LiL + uR∗ GuR = 0 λuC∗ CuC + λi 3. Comparing real and imaginary parts concludes the assertion. C. Tischendorf Modeling and Simulation with PDAEs Page 38/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Purely Imaginary Eigenvalues (PIEs) Proposition 2 All eigenvalues of an LC-circuit are PIEs. C. Tischendorf Modeling and Simulation with PDAEs Page 39/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Purely Imaginary Eigenvalues (PIEs) Proposition 2 All eigenvalues of an LC-circuit are PIEs. LC-block Proposition 3 If the reduced circuit corresponding to pencil (2) has an LC-block then the circuit has a PIE. The converse of Proposition 3 is not true. C. Tischendorf Modeling and Simulation with PDAEs Page 39/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Purely Imaginary Eigenvalues (PIEs) Theorem A circuit has a PIE for all positive values of capacitances and inductances if and only if the reduced circuit (after open-circuiting current sources and short-circuiting voltage sources) has an LC-block. C. Tischendorf Modeling and Simulation with PDAEs Page 40/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues Summary • modeling of flow networks leads to DAEs and PDAEs • existence and uniqueness of PDAE solutions only known for certain subclasses • suitable spatial discretizations of PDAEs yield index-1 DAEs • stability of the numerical solution for (P)DAEs depends on model formulation • network topology can and shall be used for well-posed network (P)DAEs, consistent initialization and pre-conditioning • network topological characterization of purely imaginary eigenvalues C. Tischendorf Modeling and Simulation with PDAEs Page 41/ 42 What are PDAEs? Applications Modeling Challenges Numerical Simulation Purely Imaginary Eigenvalues References [1] L. Jansen and C. Tischendorf. A Unified (P)DAE Modeling Approach for Flow Networks. To appear in Springer DAE-Forum Progress in Differential-Algebraic Equations - Deskriptor 2013 [2] R. Lamour, R. März, and C. Tischendorf. Differential-algebraic equations: A projector based analysis. Differential-Algebraic Equations Forum 1. Berlin: Springer, 2013 [3] R. Riaza and C. Tischendorf. Structural characterization of classical and memristive circuits with purely imaginary eigenvalues. Int. J. Circ. Theor. Appl., 41:273-294, 2013 [4] G. Alí, N. Banagaaya, W.H.A. Schilders, and C. Tischendorf. Index-aware model order reduction for linear index-2 DAEs with constant coefficients. SIAM J. Sci. Comp., 35(3):A1487-A1510, 2013 [5] S. Grundel, L. Jansen, N. Hornung, P. Benner, T. Clees, and C. Tischendorf. Model order reduction of differential algebraic equations arising from the simulation of gas transport networks. To appear in Springer DAE-Forum Progress in Differential-Algebraic Equations - Deskriptor 2013 [6] L. Jansen, M. Matthes, and C. Tischendorf. Global unique solvability for memristive circuit DAEs of index 1. Int. J. Circ. Theor. Appl., DOI 10.1002/cta.1927, 2013 C. Tischendorf Modeling and Simulation with PDAEs Page 42/ 42
© Copyright 2024 ExpyDoc