Modeling and Numerical Analysis of Partial Differential

Modeling and Numerical Analysis of Partial
Differential Algebraic Systems for the Simulation
of Networks
Caren Tischendorf
Humboldt-Universität zu Berlin
Elgersburg Workshop 2014
March 06, 2014
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Outline
1 What are PDAEs?
2 Applications
3 Modeling
4 Challenges
5 Numerical Simulation
6 Purely Imaginary Eigenvalues
C. Tischendorf
Modeling and Simulation with PDAEs
Page 1/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
What are PDAEs?
Differential-Algebraic Equation
f (u 0 (t), u(t), t) = 0
with
∂
∂y f
(y , u, t) being singular.
Example:
u10 (t) = g1 (u1 (t), u2 (t), t)
0 = g2 (u1 (t), u2 (t).t)
C. Tischendorf
Modeling and Simulation with PDAEs
Page 2/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Partial Differential-Algebraic Equations (PDAEs)
ODE
DAE
+ constraints
PDE
C. Tischendorf
PDAE
Modeling and Simulation with PDAEs
Page 3/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Partial Differential-Algebraic Equations (PDAEs)
ODE
DAE
+ constraints
PDE
PDAE
PDAE example:
ut (x , t) = uxx (x , t) + v (x , t)
0 = g(u(x , t), v (x , t), x , t)
C. Tischendorf
Modeling and Simulation with PDAEs
Page 3/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Why PDAEs?
Why are we interested in PDAEs?
C. Tischendorf
Modeling and Simulation with PDAEs
Page 4/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Applications
water networks
electronic circuits
gas networks
C. Tischendorf
Modeling and Simulation with PDAEs
blood circuit
Page 5/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Modeling of Flow Networks
network as a graph:
C. Tischendorf
Modeling and Simulation with PDAEs
Page 6/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Modeling of Flow Networks
network as a graph:
C. Tischendorf
Modeling and Simulation with PDAEs
Page 6/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Modeling of Flow Networks
network as a graph:
q4
q9
q6
q8
q7
q3
q5
q2
q1
The currents qi flow along the branches.
C. Tischendorf
Modeling and Simulation with PDAEs
Page 6/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Modeling of Flow Networks
p5
p7
network as a graph:
q4
q9
p6
p4
q3
q6
q5
p1
q1
q8
p8
q7
p3
q2
p2
The currents qi flow along the branches.
At the nodes we have pressures/potentials pj .
C. Tischendorf
Modeling and Simulation with PDAEs
Page 6/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Flow Balance at Each Node
p5
p7
p6
−q1 − q5 = 0
q4
q9
p4
q3
q6
q5
p1
C. Tischendorf
q1
q8
p8
q7
p3
q2
p2
q1 + q2 = 0
..
.
−q3 − q4 + q6 − q7 = 0
..
.
Modeling and Simulation with PDAEs
q8 = 0
Page 7/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Flow Balance at Each Node
p5
p7
p6
−q1 − q5 = qs1
q4
q9
p4
q3
q6
q5
p1
q1
q8
p8
q7
p3
q2
p2
q1 + q2 = qs1
..
.
−q3 − q4 + q6 − q7 = qs4
..
.
q8 = qs8
if sources and/or sinks exist
C. Tischendorf
Modeling and Simulation with PDAEs
Page 7/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Flow Balance at Each Node
p5
p7
p6
−q1 − q5 = qs1
q4
q9
p4
q3
q6
q5
p1
q1
q8
p8
q7
p3
q2
p2
q1 + q2 = qs1
..
.
−q3 − q4 + q6 − q7 = qs4
..
.
q8 = qs8
if sources and/or sinks exist
Aq=qs
C. Tischendorf
Modeling and Simulation with PDAEs
Page 7/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Flow Balance Equations for Networks
AT q=qs
The matrix A
• describes the topology of the network
• maps branches to nodes
• has only entries -1, 0 and +1
The vector q consists of all branch currents. It contains
• the electric currents i for electric/electronic networks
• the water flows m for water networks
• the gas flows q for gas networks
C. Tischendorf
Modeling and Simulation with PDAEs
Page 8/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Model Extension
So far, we implicitly assumed that the flow ql at the left node of a branch
equals the flow qr at the right node of the same branch.
q
branch:
nl
C. Tischendorf
nr
Modeling and Simulation with PDAEs
Page 9/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Model Extension
So far, we implicitly assumed that the flow ql at the left node of a branch
equals the flow qr at the right node of the same branch.
q
branch:
nl
nr
Such a modeling is only sufficient if one can neglect the time delay of the
flow along a branch.
C. Tischendorf
Modeling and Simulation with PDAEs
Page 9/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Model Extension
So far, we implicitly assumed that the flow ql at the left node of a branch
equals the flow qr at the right node of the same branch.
q
branch:
nl
nr
Such a modeling is only sufficient if one can neglect the time delay of the
flow along a branch.
In general, we need both, ql and qr as network variables.
ql
qr
branch:
nl
C. Tischendorf
Modeling and Simulation with PDAEs
nr
Page 9/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
General Flow Balance Equations for Networks
Al ql + Ar qr =qs
The matrix AL
• maps left branch ends to nodes
• has only the entries -1 and 0
Die Matrix AR
• maps right branch ends to nodes
• has only the entries +1 and 0
A = Al +Ar
C. Tischendorf
Modeling and Simulation with PDAEs
Page 10/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Potential and Pressure Differences
w=AT p
The vector w reflects the potential/pressure differences. It contains
• the electric voltages u for electric networks
• water pressure differences h for water networks
• gas pressure differences ∆p for gas networks
The vector p consists of pressures/potentials. It contains
• the electrostatic potentials e for electric networks
• water pressures p for water networks
• gas pressures p for gas networks
C. Tischendorf
Modeling and Simulation with PDAEs
Page 11/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Modeling of Network Elements
F(q,p,w,u,t)=0
for electric networks, e.g.
• Ohmic resistances: w=Rq
C. Tischendorf
Modeling and Simulation with PDAEs
Page 12/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Modeling of Network Elements
F(q,p,w,u,t)=0
for electric networks, e.g.
• Ohmic resistances: w=Rq
d
• capacitances: q=C dt
w
C. Tischendorf
Modeling and Simulation with PDAEs
Page 12/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Modeling of Network Elements
F(q,p,w,u,t)=0
for electric networks, e.g.
• Ohmic resistances: w=Rq
d
• capacitances: q=C dt
w
• diodes: q=q0 exp ( ww − 1)
0
C. Tischendorf
Modeling and Simulation with PDAEs
Page 12/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Modeling of Network Elements
F(q,p,w,u,t)=0
for electric networks, e.g.
• Ohmic resistances: w=Rq
d
• capacitances: q=C dt
w
• diodes: q=q0 exp ( ww − 1)
0
• transistors: q=
R
Γ
[(Jn + Jp ) · ν χ1 − ε ∂t grad ψ · ν χ2 ] dσ
Jn =qe (Dn grad n−µn n grad ψ)
Jp =qe (−Dp grad p−µp p grad ψ)
αψ+β grad ψ·ν=s(p)
C. Tischendorf
on Γ
1
−∂t n+ q div Jn =R(n,p,Jn ,Jp )
e
1
∂t p+ q div Jp =−R(n,p,Jn ,Jp )
e
div (ε grad ψ)=qe (n−p−N)
Modeling and Simulation with PDAEs
Page 12/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Example Circuit Equations
Circuits with capacitors, inductors, resistors, voltage and current sources
AC qC + AL qL + AR qR + AV qV + AI qI = 0
>
>
>
>
wC = A>
C p, wL = AL p, wR = AR p, wV = AV p, wI = AI p
qC =
C. Tischendorf
d
d
fC (wC ), wL = fL (qL ), qR = fR (wR ), wV = vset , qI = iset
dt
dt
Modeling and Simulation with PDAEs
Page 13/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Example Circuit Equations
Circuits with capacitors, inductors, resistors, voltage and current sources
MNA:
AC qC + AL qL + AR qR + AV qV + AI qI = 0
>
>
>
>
wC = A>
C p, wL = AL p, wR = AR p, wV = AV p, wI = AI p
qC =
C. Tischendorf
d
d
fC (wC ), wL = fL (qL ), qR = fR (wR ), wV = vset , qI = iset
dt
dt
Modeling and Simulation with PDAEs
Page 13/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Example Circuit Equations
Circuits with capacitors, inductors, resistors, voltage and current sources
MNA:
AC
d
fC (wC ) + AL qL + AR fR (wR ) + AV qV + AI iset = 0
dt
>
>
>
>
wC = A>
C p, wL = AL p, wR = AR p, wV = AV p, wI = AI p
qC =
C. Tischendorf
d
d
fC (wC ), wL = fL (qL ), qR = fR (wR ), wV = vset , qI = iset
dt
dt
Modeling and Simulation with PDAEs
Page 13/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Example Circuit Equations
Circuits with capacitors, inductors, resistors, voltage and current sources
MNA:
AC
d
fC (wC ) + AL qL + AR fR (wR ) + AV qV + AI iset = 0
dt
>
>
>
>
wC = A>
C p, wL = AL p, wR = AR p, wV = AV p, wI = AI p
qC =
C. Tischendorf
d
d
fC (wC ), wL = fL (qL ), qR = fR (wR ), wV = vset , qI = iset
dt
dt
Modeling and Simulation with PDAEs
Page 13/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Example Circuit Equations
Circuits with capacitors, inductors, resistors, voltage and current sources
MNA:
AC
d
>
fC (A>
C p) + AL qL + AR fR (AR p) + AV qV + AI iset = 0
dt
>
>
>
>
wC = A>
C p, wL = AL p, wR = AR p, wV = AV p, wI = AI p
qC =
C. Tischendorf
d
d
>
>
fC (A>
fL (qL ), qR = fR (A>
C p), AL p =
R p), AV p = vset , qI = iset
dt
dt
Modeling and Simulation with PDAEs
Page 13/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Example Circuit Equations
Circuits with capacitors, inductors, resistors, voltage and current sources
MNA:
d
>
fC (A>
C p) + AL qL + AR fR (AR p) + AV qV + AI iset = 0
dt
d
fL (qL )
A>
Lp =
dt
A>
V p = vset
AC
>
>
>
wC = A>
C p, wL = AL p, wR = AR p, wV = vset , wI = AI p
d
>
qC = fC (A>
C p), qR = fR (AR p), qI = iset
dt
C. Tischendorf
Modeling and Simulation with PDAEs
Page 13/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Modeling of Network Elements
F(qL ,qR ,p,w,u,t)=0
for water networks, e.g.
• reservoirs: p = p set
d
• tanks: C dt
p= qs
C. Tischendorf
Modeling and Simulation with PDAEs
Page 14/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Modeling of Network Elements
F(qL ,qR ,p,w,u,t)=0
for water networks, e.g.
• reservoirs: p = p set
d
• tanks: C dt
p= qs
• pipes:
∂t p + a∂x q = 0
∂t q + b∂x p + c|q|q + d = 0
p(nl ) = pnl ,
C. Tischendorf
p(nr ) = pnr ,
q(nl ) = ql ,
Modeling and Simulation with PDAEs
q(nr ) = qr
Page 14/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Example Water Network Equations
water network with pipes and reservoirs
APl ql + APr qr = qset
pR = pset
∂t p + a∂x q = 0
∂t q + b∂x p + c|q|q + d = 0
p(nl ) = pnl ,
C. Tischendorf
p(nr ) = pnr ,
q(nl ) = ql ,
Modeling and Simulation with PDAEs
q(nr ) = qr
Page 15/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Modeling of Network Elements
F(qL ,qR ,p,w,u,t)=0
for gas networks, e.g.
• valves: q=qL =qR = g(w, t)
C. Tischendorf
Modeling and Simulation with PDAEs
Page 16/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Modeling of Network Elements
F(qL ,qR ,p,w,u,t)=0
for gas networks, e.g.
• valves: q=qL =qR = g(w, t)
• pipes:
∂t % + ∂x q
∂t q + ∂x p + ∂x (%v 2 ) + gp∂x h
p
p(nL ) = pnL ,
C. Tischendorf
p(nR ) = pnR ,
= 0
λ(q)
%v |v |
2D
= γ(T )z(p, T )%
= −
q(nL ) = qL ,
Modeling and Simulation with PDAEs
q(nR ) = qR
Page 16/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Modeling of Network Elements
for blood circuits, e.g. systemic circuit
Systemic Circuit
Pulmonary Circuit
[Danielsen, Ottesen 2004]
C. Tischendorf
Modeling and Simulation with PDAEs
Page 17/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Modeling of Network Elements
for blood circuits, e.g. heart chambers
[Danielsen, Ottesen 2004]
C. Tischendorf
Modeling and Simulation with PDAEs
Page 18/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Model Equations for Networks
1
flow balance at each node: AL qL + AR qR = 0
2
potential/pressure differences: w=AT p
3
element models: F(qL ,qR ,p,w,u,t)=0
Depending on the element models the resulting system represents a
system of
• linear/nonlinear equations
• differential algebraic equations (DAEs)
• partial differential algebraic equations (PDAEs)
C. Tischendorf
Modeling and Simulation with PDAEs
Page 19/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Challenges for (P)DAEs
• existence of solutions
• uniqueness of solutions
• stability
• numerical methods (feasible, convergent and stable)
• solver for the discretized PDAE
• implementation of numerical methods (monolithic or co-simulation)
• model order reduction
• parameter optimization
• uncertainty quantification
• control
C. Tischendorf
Modeling and Simulation with PDAEs
Page 20/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Weak Formulation of PDAEs
generalized evolution equation approach
0
A∗ [Du(t)] + B(u(t), t) = r (t)
f.a.a. t ∈ I
Du(t0 ) = z0 ∈ Z
• real Banach spaces V , Z , evolution triple Z ⊆ H ⊆ Z ∗
• D : V → Z surjective, A = T D
• B : V × I → V∗
solution space
0
W21 (I, V , Z , H) = u ∈ L2 (I, V ) ∃ [Du(t)] ∈ L2 (I, Z ∗ )
C. Tischendorf
Modeling and Simulation with PDAEs
Page 21/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Unique Solvability I
0
A∗ [Du(t)] + B(u(t), t) = r (t)
f.a.a. t ∈ I
Du(t0 ) = z0 ∈ Z
is uniquely solvable [T. 2004, Matthes 2012] on W21 (I, V , Z , H) if
• B : V × I → V ∗ strongly monotone, satisfies growth condition
• r ∈ L2 (I; V ∗ )
Drawback:
Coupled systems often do not lead to a strongly monotone operator B
C. Tischendorf
Modeling and Simulation with PDAEs
Page 22/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Unique Solvability II
d
Pm(Px (t)) + F (x (t), t) + PM(x (t), u(t), t) = 0,
dt
A(u(t)) − R(x (t)) = 0
t ∈ I,
has a unique solution [Matthes 12] if
• P ∈ Rn×n is orthoprojector and Q := I − P
• the map Px 7→ Pm(Px ) is strongly monotone (on Im P) and ∈ C 1
• F : Rn × I → Rn is continuous and Lipschitz continuous w.r.t. x
• The map φ : Im Q → Im Q with w 7→ QF (z + w , t) is bijective and
φ−1 (z, t) is continuous and Lipschitz continuous w.r.t. z ∈ Im P, t ∈ I
• A : V → V ∗ is strongly monotone and hemicontinuous on V
• M : Rn × V → Rn is continuous and Lipschitz continuous w.r.t. x , u
• R : Rn → V ∗ is Lipschitz continuous
• (x (t0 ), u(t0 )) ∈ {(x , u) ∈ Rn × V | QF (x , t0 ) = 0, A(u) − R(x ) = 0}
C. Tischendorf
Modeling and Simulation with PDAEs
Page 23/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Discretization of PDAEs
ODE
DAE
spatial discretization
parabolic PDE
C. Tischendorf
PDAE
Modeling and Simulation with PDAEs
Page 24/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Simple DAE Examples
u10 (t) = u2 (t) + h(t)
0 = u1 (t) + u2 (t) + g(t)
C. Tischendorf
⇒
u10 (t) = −u1 (t) − g(t) + h(t)
u2 (t) = −u1 (t) − g(t)
Modeling and Simulation with PDAEs
Page 25/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Simple DAE Examples
u10 (t) = u2 (t) + h(t)
0 = u1 (t) + u2 (t) + g(t)
u10 (t) = u2 (t) + h(t)
0 = u1 (t) + g(t)
C. Tischendorf
⇒
⇒
u10 (t) = −u1 (t) − g(t) + h(t)
u2 (t) = −u1 (t) − g(t)
u2 (t) = −g 0 (t) − h(t)
u1 (t) = −g(t)
Modeling and Simulation with PDAEs
Page 25/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Simple DAE Examples
u10 (t) = u2 (t) + h(t)
0 = u1 (t) + u2 (t) + g(t)
u10 (t) = u2 (t) + h(t)
0 = u1 (t) + g(t)
⇒
⇒
u20 (t) = u3 (t)
u10 (t)
= u2 (t) + h(t)
0 = u1 (t) + g(t)
C. Tischendorf
u10 (t) = −u1 (t) − g(t) + h(t)
u2 (t) = −u1 (t) − g(t)
u2 (t) = −g 0 (t) − h(t)
u1 (t) = −g(t)
u3 (t) = −g 00 (t) − h0 (t)
⇒
u2 (t) = −g 0 (t) − h(t)
u1 (t) = −g(t)
Modeling and Simulation with PDAEs
Page 25/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Simple DAE Examples
Index 1
u10 (t) = u2 (t) + h(t)
0 = u1 (t) + u2 (t) + g(t)
⇒
u10 (t) = −u1 (t) − g(t) + h(t)
u2 (t) = −u1 (t) − g(t)
Index 2
u10 (t) = u2 (t) + h(t)
0 = u1 (t) + g(t)
⇒
u2 (t) = −g 0 (t) − h(t)
u1 (t) = −g(t)
Index 3
u20 (t) = u3 (t)
u10 (t) = u2 (t) + h(t)
0 = u1 (t) + g(t)
C. Tischendorf
u3 (t) = −g 00 (t) − h0 (t)
⇒
u2 (t) = −g 0 (t) − h(t)
u1 (t) = −g(t)
Modeling and Simulation with PDAEs
Page 25/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Perturbation Index
u20 (t) = u3 (t)
u10 (t) = u2 (t) + h(t)
0 = u1 (t) + g(t)
C. Tischendorf
Modeling and Simulation with PDAEs
Page 26/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Perturbation Index
u3 (t) = n2 ε cos(nt) − h0 (t)
u20 (t) = u3 (t)
u10 (t)
= u2 (t) + h(t)
⇒
0 = u1 (t) + ε cos(nt)
ku1 − uδ1 k = ε,
u2 (t) = nε sin(nt) − h(t)
u1 (t) = −ε cos(nt)
ku2 − uδ2 k = nε,
ku3 − uδ3 k = n2 ε
ill-posed problem !
C. Tischendorf
Modeling and Simulation with PDAEs
Page 26/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Perturbation Index
u3 (t) = n2 ε cos(nt) − h0 (t)
u20 (t) = u3 (t)
u10 (t)
= u2 (t) + h(t)
⇒
0 = u1 (t) + ε cos(nt)
ku1 − uδ1 k = ε,
u2 (t) = nε sin(nt) − h(t)
u1 (t) = −ε cos(nt)
ku2 − uδ2 k = nε,
ku3 − uδ3 k = n2 ε
ill-posed problem !
ku − uδ k ≤ c (kδk + kδ 0 k + kδ 00 k)
perturbation index 3
C. Tischendorf
Modeling and Simulation with PDAEs
Page 26/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
PDAE Discretization
Approach:
1
spatial discretization
2
time discretization
Goal: Find space discretizations yielding low index DAEs!
C. Tischendorf
Modeling and Simulation with PDAEs
Page 27/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Spatial Discretization for Water Networks
water networks with reservoirs and pipes:
APl ql + APr qr = qset
1
−∂t A>
Pl p + Da (qr − ql ) = 0
h
1
1
>
∂t qr + Db (A>
Db A >
Pr p + APl p) + c|qr |qr + d =
R pset
h
h
is a DAE system of index 1 if the direction of pipes is chosen as follows:
1
Each reservoir has only pipes directing away from the reservoir.
2
Each other node of the network has at least one pipe directing to
this node.
C. Tischendorf
Modeling and Simulation with PDAEs
Page 28/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Problems when Solving (P)DAEs
• The algebraic constraints demand implicit or half-implicit methods.
• The solution does not depend continuously on the input data (for
higher index DAEs).
• Initial values have to fulfil (hidden) constraints.
• Numerical methods as implicit multistep or one-step methods may
fail.
• Simulation results may depend on the (P)DAE formulation.
C. Tischendorf
Modeling and Simulation with PDAEs
Page 29/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Trouble when Simulating DAEs
index 2 example [Gear, Petzold 86]
x10 + ηtx20 + (1 + η)x2 = q1
x1 + ηtx2 = q2
unique solution:
x2
= q1 − q20
x1
= q2 − ηtx2
numerical solution:
The methods fail for parameter values η < −0.5.
C. Tischendorf
Modeling and Simulation with PDAEs
Page 30/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Reformulation of the DAE
equivalent formulation
x10 + (ηtx )02 + x2 = q1
x1 + ηtx2 = q2
numerical solution:
All methods work well for all parameter values.
reason: The discretization method applied to the DAE yields to the same
method for the inherent dynamical part [Higueras, März, T. 2004].
C. Tischendorf
Modeling and Simulation with PDAEs
Page 31/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Implementation Concept
element models
spatial discret.
network equations
time discretization
∂t f (y )+∂x g(y ) = h(y , t)
∂t f (y )+∆x g(y ) = h(y , t)
f (d 0 (y , t), y , t) = 0
f (∆t d(y , t), y , t) = 0
net control
parameters
topological
analysis
name=”reg1”, sp=30, ...
loops, connections, ...
nonlinear system
netlist
parser
initialization
pipe, nodeL=”name1”,
{n1, n2, ...},
homotopy providing y0
..., L=93, ...
{v 1, v 2, ...}
F (y ) = 0
Newton type method
yn = G(yn−1 )
linear system
postprocessing
Ay = b
pressures p, flows q, ...
C. Tischendorf
output
linear solver
preconditioning
y
LU, QR, CG, hybrid, ...
PAy = Pb
Modeling and Simulation with PDAEs
Page 32/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Coupled Circuit-EM Simulation
The perturbation behavior (DAE index) depends on the choice of gauge
conditions for the vector potential A [Baumanns 2012].
• Lorenz gauge: ∇ · A = 0 ⇒ index 2
d
• Coulomb gauge: εµ dt
ϕ + ∇ · A = 0 ⇒ index 0/1/2
cross coupling effects in high frequency circuits
C. Tischendorf
Modeling and Simulation with PDAEs
Page 33/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Blood Circuit Simulation
C. Tischendorf
heart chambers
blood flow
blood pressure
blood volume
Modeling and Simulation with PDAEs
Page 34/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Blood Circuit Simulation
simulated aortic blood pressure: 117/82 mmHG (normal value)
increase/decrease
50% incr.
50% incr.
50% incr.
50% decr.
50% decr.
50% decr.
50% incr.+decr.
25% incr.+decr.
parameter
R1
R2
R3
C1
C2
C3
R1 , R2 , R3 + C1 , C2 , C3
R1 , R2 , R3 + C1 , C2 , C3
blood pressure
126/83
119/86
118/85
181/87
140/92
127/90
194/137
146/104
C1 , R1 : compliance and resistance in aortic vessels
C2 , R2 : compliance and resistance in arterioles
C3 , R3 : compliance and resistance in capillaries
C. Tischendorf
Modeling and Simulation with PDAEs
Page 35/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Purely Imaginary Eigenvalues for Circuits
C. Tischendorf
CuC0
= iC
LiL0
= uL
0
= BC uC + BL uL + BR uR + BJ uJ + BV vs (t)
0
= QC iC + QL iL + QR iR + QJ js (t) + QV iV
0
= iR − GuR
Modeling and Simulation with PDAEs
Page 36/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Purely Imaginary Eigenvalues for Circuits
CuC0
= iC
LiL0
= uL
0
= BC uC + BL uL + BR uR + BJ uJ + BV vs (t)
0
= QC iC + QL iL + QR iR + QJ js (t) + QV iV
0
= iR − GuR
Matrix Pencil






C. Tischendorf
λC
0
BC
0
0
0
−I
BL
0
0
−I
0
0
QC
0
0
λL
0
QL
0
0
0
BR
0
G
0
0
0
QR
−I
0
0
BJ
0
0
Modeling and Simulation with PDAEs
0
0
0
QV
0






Page 36/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Matrix Pencils
Matrix Pencil (2)
Matrix Pencil (1)

λC 0 −I
 0 −I 0
 BC BL 0
 0 0 Q
C
0 0 0
0 0 0 0
λL 0 0 0
0 BR 0 BJ
QL 0 QR 0
0 G −I 0

0
0 
0 

QV
0
λC 0 −I 0 0 0
 0 −I 0 λL 0 0 
 Bˆ C Bˆ L 0 0 Bˆ R 0 

ˆC Q
ˆL 0 Q
ˆR 
0 0 Q
0 0 0 0 G −I


Theorem
Assume that a given circuit has neither V-loops nor I-cutsets. The
spectrum of the matrix pencil (1) coincides with that of the pencil (2),
provided that the latter is defined by the RLC circuit obtained after
open-circuiting current sources and short-circuiting voltage sources.
C. Tischendorf
Modeling and Simulation with PDAEs
Page 37/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Purely Imaginary Eigenvalues (PIEs)
Proposition 1
Any eigenvector associated with a PIE verifies uR = iR = 0.
Proof Idea 1. If (u, i) = (uC , uL , uR , iC , iL , iR ) is an eigenvector to a PIE
λ then
u ∗ i = (Q T w )∗ i = w ∗ Qi = 0,
since Bu = 0 and Ker B = Im Q T .
2. Including the element related equations yields
¯ L∗ LiL + uR∗ GuR = 0
λuC∗ CuC + λi
3. Comparing real and imaginary parts concludes the assertion.
C. Tischendorf
Modeling and Simulation with PDAEs
Page 38/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Purely Imaginary Eigenvalues (PIEs)
Proposition 2
All eigenvalues of an LC-circuit are PIEs.
C. Tischendorf
Modeling and Simulation with PDAEs
Page 39/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Purely Imaginary Eigenvalues (PIEs)
Proposition 2
All eigenvalues of an LC-circuit are PIEs.
LC-block
Proposition 3
If the reduced circuit corresponding to pencil (2) has an LC-block then
the circuit has a PIE.
The converse of Proposition 3 is not true.
C. Tischendorf
Modeling and Simulation with PDAEs
Page 39/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Purely Imaginary Eigenvalues (PIEs)
Theorem
A circuit has a PIE for all positive values of capacitances and inductances
if and only if the reduced circuit (after open-circuiting current sources
and short-circuiting voltage sources) has an LC-block.
C. Tischendorf
Modeling and Simulation with PDAEs
Page 40/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
Summary
• modeling of flow networks leads to DAEs and PDAEs
• existence and uniqueness of PDAE solutions only known for certain
subclasses
• suitable spatial discretizations of PDAEs yield index-1 DAEs
• stability of the numerical solution for (P)DAEs depends on model
formulation
• network topology can and shall be used for well-posed network
(P)DAEs, consistent initialization and pre-conditioning
• network topological characterization of purely imaginary eigenvalues
C. Tischendorf
Modeling and Simulation with PDAEs
Page 41/ 42
What are PDAEs?
Applications
Modeling
Challenges
Numerical Simulation
Purely Imaginary Eigenvalues
References
[1] L. Jansen and C. Tischendorf. A Unified (P)DAE Modeling Approach for Flow
Networks. To appear in Springer DAE-Forum Progress in Differential-Algebraic
Equations - Deskriptor 2013
[2] R. Lamour, R. März, and C. Tischendorf. Differential-algebraic equations: A
projector based analysis. Differential-Algebraic Equations Forum 1. Berlin:
Springer, 2013
[3] R. Riaza and C. Tischendorf. Structural characterization of classical and
memristive circuits with purely imaginary eigenvalues. Int. J. Circ. Theor. Appl.,
41:273-294, 2013
[4] G. Alí, N. Banagaaya, W.H.A. Schilders, and C. Tischendorf. Index-aware model
order reduction for linear index-2 DAEs with constant coefficients. SIAM J. Sci.
Comp., 35(3):A1487-A1510, 2013
[5] S. Grundel, L. Jansen, N. Hornung, P. Benner, T. Clees, and C. Tischendorf.
Model order reduction of differential algebraic equations arising from the
simulation of gas transport networks. To appear in Springer DAE-Forum
Progress in Differential-Algebraic Equations - Deskriptor 2013
[6] L. Jansen, M. Matthes, and C. Tischendorf. Global unique solvability for
memristive circuit DAEs of index 1. Int. J. Circ. Theor. Appl., DOI
10.1002/cta.1927, 2013
C. Tischendorf
Modeling and Simulation with PDAEs
Page 42/ 42