Table S1 lists the functional consistency (i.e., the percentage of aligned proteins sharing common GO terms) of all the pairwise alignments generated by six different methods: HubAlign, IsoRank, PISwap, MI-GRAAL, GHOST and NETAL. The humanyeast alignment is already presented in the main paper, so it is not included in this section. worm-fly Alignment of PPI networks of human, yeast, fly, worm and mouse mouse-yeast 1.1 mouse-worm NETAL HubAlign 79.27 63.93 34.51 80.65 >=2 39.19 14.61 55.96 48.58 6.1 60.36 >=3 29.78 6.87 40.84 38.96 1.59 52.53 >=4 23.88 2.79 27.57 31.20 0.5 45.49 >=5 19.18 1.24 19.25 26.37 0.16 38.26 >=1 24.85 0 34.11 25.11 11.92 43.52 >=2 13.05 0 17.74 13.19 1.64 27.02 >=3 7.67 0 8.93 7.68 0.43 16.43 >=4 4.28 0 4.26 4.15 0.15 9.34 >=5 2.24 0 1.96 2.08 0.07 4.90 >=1 38.02 24.34 48.69 37.95 21.43 50.18 >=2 16.64 6.00 24.12 16.60 2.42 30.67 >=3 8.32 2.13 12.11 7.90 0.35 18.76 >=4 3.61 0.76 5.08 3.20 0.07 9.95 >=5 1.50 0.11 2.01 1.39 0.0 4.97 >=1 16.11 0 21.98 16.25 8.04 32.87 >=2 7.28 0 10.88 7.30 0.77 19.55 >=3 4.24 0 5.34 4.19 0.14 11.57 >=4 2.02 0 2.29 1.97 0.02 5.71 >=5 0.78 0 0.81 0.81 0.0 2.50 >=1 43.39 27.8 44.14 42.07 17.7 54.20 >=2 21.39 7.09 20.72 20.65 2.77 31.00 >=3 12.06 1.93 10.67 11.77 0.92 18.13 >=4 5.89 0.57 4.19 5.83 0.4 9.01 >=5 2.78 0.15 1.86 2.72 0.34 4.76 worm-yeast PISwap 46.18 mouse-fly GHOST 61.30 Average over all alignments MI-GRAAL >=1 #shared GO terms IsoRank fly-yeast human-worm human-fly human-mouse alignment Table S1: Comparison between HubAlign and the others in terms of functional consistency of the alignments. MI-GRAAL and GRAAL do not produce any results for human-fly and yeast-fly alignment. >=1 37.63 13.85 43.77 36.91 8.01 44.66 >=2 20.52 3.71 23.40 19.84 1.29 27.66 >=3 9.95 1.39 11.07 9.56 0.41 16.05 >=4 3.94 0.78 4.74 3.90 0.36 8.00 >=5 2.01 0.43 2.04 2.01 0.32 4.14 >=1 33.09 26.73 44.26 33.17 19.0 49.28 >=2 9.74 5.79 19.9 10.13 2.12 26.57 >=3 4.83 1.79 10.35 4.99 0.56 16.40 >=4 2.35 0.67 4.53 2.47 0.34 8.37 >=5 1.23 0.23 1.56 1.19 0.26 4.74 >=1 21.96 14.56 26.12 22.01 12.95 27.49 >=2 6.98 2.59 10.44 6.87 1.61 13.58 >=3 3.49 0.59 4.93 3.38 0.45 7.64 >=4 1.20 0.14 1.86 1.27 0.26 3.83 >=5 0.54 0.03 0.73 0.65 0.22 2.13 >=1 31.82 23.71 39.69 31.97 12.91 48.67 >=2 19.01 6.91 20.75 18.88 2.09 31.58 >=3 11.85 2.71 10.57 11.18 0.57 21.39 >=4 6.70 0.88 5.33 6.84 0.47 13.89 >=5 4.08 0.34 2.34 4.02 0.47 7.92 >=1 34.24 19.68 42.44 34.37 16.27 47.72 >=2 17.08 5.18 22.65 18.00 2.31 29.77 >=3 10.24 1.93 12.75 11.06 0.60 19.87 >=4 5.98 0.73 6.65 6.75 0.28 12.62 >=5 3.81 0.28 3.61 4.58 0.20 8.25 90 80 70 60 50 40 30 20 10 0 (a) 9000 8000 7000 6000 5000 4000 3000 2000 1000 0 (b) S.Hashemifar et al. 60 50 40 30 20 10 0 (c) Fig. S1: Performance of HubAlign and the other methods in terms of EC (a), LCCS (b) and (c) of the alignments. MI-GRAAL and GRAAL do not produce any result for human-fly and yeast-fly alignment. 1.2 Alignment of bacterial PPI networks In terms of functional consistency (FC), HubAlign has a much larger advantage over IsoRank, MI-GRAAL, NETAL and PISwap and a small advantage over GHOST. HubAlign cannot obtain a larger advantage over GHOST possibly because it is very challenging to align these two PPI networks. As shown in Table S2, although both species are bacteria, the absolute FC of all the alignments is not very big (<50%). This may be due to that these two PPI networks are very sparse. On average, each protein in these two networks has 4-6 PPIs. By contrast, in the yeast PPI network each protein has on average 20 PPIs. Fig. S2: Performance of HubAlign in term of S3(a) and LCCS(b) of the alignments for different values of λ between 0 and 1 in increment of 0.1. 1.3 IsoRank MI-GRAAL GHOST PISwap NETAL HubAlign #shared GO terms Table S2: Functional consistency of the bacterial network alignments generated by five methods. 20.10 29.6 46.69 17.93 21.62 46.82 3.29 12.7 33.07 5.41 7.97 35.79 2.86 6.48 23.15 2.45 3.08 28.01 0.20 4.44 17.04 0.51 1.93 21.40 0.0 2.92 12.08 0.12 1.28 17.12 Evaluation of parameters λ and α As shown in Fig. S2, AFS increases as λ gets close to 1, while and LCCS decrease. As mentioned in main paper, we believe the reason could be that the higher values of λ give more importance to the edge weights which in turn, makes the proteins with important interactions align together. As shown in Fig. S3, increasing α from 0 to 1 decreases AFS, while and LCCS increase. This is because a larger value of α decreases effect of the sequence information. 1.4 Pure topological comparison In this section, we do a comprehensive pure topological based (i.e. α=1) evaluation of the HubAlign against the other methods in pure topological setup i.e. MI-GRAAL, NETAL and GHOST. We ran NETAL with the default parameters. MI-GRAAL was run using degree, signature similarity and clustering coefficient. For GHOST we set and to do a purely topological alignment. As shown in Table S3, the alignment produced by HubAlign greatly outperforms the other methods in 5 out of 10 alignments (i.e. mouse-yeast, mouse-fly, mouse-worm, worm-yeast and worm-fly) and slightly outperforms them for the remaining 5 alignments. This result indicates that our algorithm can yield biologically meaningful alignment more efficiently than the others, even without using sequence information. Moreover table S4 shows that the alignment produces by HubAlign outperforms those by the other methods in terms of AFS under all three categories BP, MF and CC. HubAlign also produces alignments with larger EC and LCCS than the other algorithms (see Fig. S4). These results indicate that HubAlign in pure topological based setup is able to align more functionally similar proteins and find larger complexes that are significant either topologically or biologically. mouse-worm worm-yeast worm-fly human-mouse human-worm fly-yeast human-fly yeast-human 0.40 0.36 0.50 CC mouse-fly 0.63 0.61 0.57 0.68 BP 0.35 0.48 0.50 0.56 MF 0.34 0.34 0.33 0.39 CC 0.38 0.35 0.34 0.41 MF 0.35 0.35 0.31 0.38 CC 0.27 0.25 0.25 0.27 BP 0.27 0.27 0.26 0.29 MF 0.22 0.21 0.23 0.24 CC 0.23 0.24 0.24 0.26 BP 0.28 0.29 0.31 0.33 MF 0.15 0.17 0.18 0.18 CC 0.12 0.13 0.13 0.14 BP 0.67 0.67 0.73 0.73 MF 0.72 0.71 0.70 0.72 CC 0.74 0.73 0.66 0.75 BP 0.38 0.39 0.40 0.41 MF 0.32 0.31 0.23 0.34 CC 0.25 0.23 0.25 0.26 BP 0 0.35 0.38 0.39 MF 0 0.23 0.23 0.25 CC 0 0.35 0.36 0.36 BP 0 0.40 0.41 0.41 MF 0 0.28 0.28 0.28 CC 0 0.30 0.30 0.31 BP 0.58 0.58 0.58 0.59 MF 0.46 0.45 0.46 0.46 CC 0.70 0.69 0.71 0.70 >=1 37.17 35.37 34.51 37.96 >=2 7.23 7.29 6.1 7.54 >=3 2.28 2.24 1.59 2.76 >=4 0.80 0.67 0.5 1.23 >=5 0.20 0.42 0.16 0.49 >=1 22.84 20.57 19.0 26.34 >=2 1.97 2.08 2.12 2.80 0.64 Alignment #shared GO terms HubAlign 0.46 0.47 NETAL MF 0.42 GHOST 0.57 0.43 MI-GRAAL 0.47 human-mouse 0.50 HubAlign GHOST 0.53 NETAL MI-GRAAL mouse-yeast BP AFS alignment Table S3: Performance of HubAlign and the other methods in terms of AFS of the alignments in categories BP, MF and CC in the pure topological setup. MI-GRAAL does not produce any result for human-fly and yeast-fly alignment. 0.42 Table S4: Performance of HubAlign and the other methods in terms of functional consistency in the pure topological setup. MI-GRAAL does not produce any result for human-fly and yeast-fly alignment. mouse-yeast Fig. S3: Performance of HubAlign in term of S3(a) and LCCS(b) of the alignments for different values of α between 0 and 1 in increment of 0.1. BP >=3 0.29 0.21 0.56 >=4 0.04 0.24 0.34 0.38 >=5 0.0 0.0 0.26 0.30 S.Hashemifar et al. >=2 >=3 human-worm human-fly >=4 0 0 0 0 7.56 8.04 9.50 0.63 0.77 0.12 0.14 0.02 0.02 0.02 0.79 0.15 0.05 >=5 0 0.0 0.0 >=1 0 11.75 11.92 12.36 >=2 0 1.78 1.64 2.25 >=3 0 0.37 0.43 0.65 >=4 0 0.14 0.15 0.18 >=5 0 0.03 0.07 0.07 >=1 19.87 19.91 21.43 21.46 >=2 1.38 2.11 2.42 2.56 >=3 0.0 0.31 0.35 0.56 >=4 0.0 0.0 0.07 0.15 0.0 >=5 0.0 0.0 0.0 >=1 21.73 21.51 17.7 22.01 >=2 2.47 2.24 2.77 2.77 >=3 0.85 0.28 0.92 0.98 >=4 0.22 0.11 0.4 0.50 >=5 0.17 0.05 0.34 0.41 >=1 6.89 8.21 8.01 9.18 >=2 0.76 0.77 1.29 1.47 >=3 0.13 0.04 0.41 0.48 >=4 0.04 0.0 0.36 0.20 >=5 0.0 0.0 0.32 0.05 >=1 11.70 11.27 12.95 13.13 >=2 0.86 0.57 1.61 1.69 >=3 0.11 0.07 0.45 0.54 >=4 0.03 0.03 0.26 0.04 >=5 0.0 0.0 0.22 0.0 >=1 13.12 12.48 12.91 15.94 >=2 2.27 2.38 2.09 3.15 >=3 0.93 0.49 0.57 0.87 >=4 0.31 0.14 0.47 0.34 >=5 0.05 0.09 0.47 0.09 >=1 25.59 24.78 26.03 26.08 >=2 2.67 2.31 2.95 2.97 >=3 0.55 0.37 0.67 0.42 >=4 0.14 0.08 0.24 0.18 >=5 0.06 0.0 0.14 0.02 >=1 Average over all alignments fly-yeast >=1 >=2 15.89 1.96 17.34 17.25 19.39 2.21 2.37 2.80 0.79 >=3 0.51 0.45 0.60 >=4 0.15 0.14 0.28 0.32 0.05 0.19 0.14 >=5 0.04 100 90 80 70 60 50 40 30 20 10 0 12000 yeast-human mouse-fly worm-yeast worm-fly mouse-worm 10000 8000 6000 4000 2000 0 (b) Fig. S4: Performance of HubAlign and the other methods in terms of EC (a) and LCCS (b). MI-GRAAL does not produce any result for human-fly and yeast-fly alignment.
© Copyright 2024 ExpyDoc