Linearly dispersing plasmons in monolayer transition metal dichalcogenides David Abergel with Konstantyn Kechedzhi. Nordita March 4th 2014 D.S.L. Abergel (Nordita) Plasmons in TMDs 3/4/14 1/8 Linearly dispersing plasmon 0.05 MoS2 µ = -0.8eV α = 20meV 40 20 0.03 0 0.02 Re ε(q,ω) ω (eV) 0.04 Transition metal dichalcogenides with Zeeman field support additional plasmon modes. -20 The extra mode has linear dispersion. 0.01 -40 A(q,ω) (arb. units) 0 8 0 0.1 0.2 0.3 q (nm-1) 0.4 Spectral function has clear peak corresponding to linear mode. 0.5 Existence of additional plasmon requires some tuning of parameters. q = 0.05 nm-1 -1 q = 0.10 nm-1 q = 0.15 nm-1 q = 0.20 nm 6 Possible to induce additional plasmon via proximity effect from strong ferromagnetic layer. 4 2 00 See arXiv:1402.5274. 0.01 D.S.L. Abergel (Nordita) 0.02 ω (eV) 0.03 0.04 Plasmons in TMDs 3/4/14 2/8 Transition metal dichalcogenides SOC splits valence band. Time reversal symmetry demands opposite shift in each valley. Result is valley-spin locked optical excitations. K.F. Mak et al., Nat. Nano. 7, 494 (2012). D.S.L. Abergel (Nordita) Plasmons in TMDs 3/4/14 3/8 Transition metal dichalcogenides SOC splits valence band. Time reversal symmetry demands opposite shift in each valley. Result is valley-spin locked optical excitations. K.F. Mak et al., Nat. Nano. 7, 494 (2012). We add Zeeman field: H = ξatσ · k + ∆ σz − 1 σz − ξsλ + sα 2 2 And calculate the plasmon spectrum. K′ D.S.L. Abergel (Nordita) Plasmons in TMDs K 3/4/14 3/8 Theoretical details In random phase approximation: χ0 (q, ω) = (q, ω) = 1 − V (q)χ0 (q, ω) and χ0 (q, ω) = Z fξsβk − fξsβk+q d2 k X Fξsβ (k, k + q) . 4π 2 ω + iη + Eξsβk − Eξsβk+q ξ,s,β In limit q/kF 1 we can write an analytical expression for χ0 : i X h ζs I qvω + iJ qvω χ0 (q, ω) ≈ − s Fs Fs where vF s is band-dependent Fermi velocity, ζs = kF s /(2πvF s ), and a K↑ I(a) = Θ(1 − a) − Θ(a − 1) √ −1 2 µ a −1 a J (a) = −Θ(1 − a) √ K′ ↓ 1 − a2 D.S.L. Abergel (Nordita) Plasmons in TMDs 3/4/14 4/8 Variation with chemical potential 0.05 D= e2 (kF ↑ vF ↑ + kF ↓ vF ↓ ) 2κ D.S.L. Abergel (Nordita) -0.7 0.03 0.02 E (eV) with 0.04 ω (eV) First plasmon has dispersion √ ω1 (q) = D q 0.01 -0.8 00 Plasmons in TMDs 0.1 0.2 q (nm-1) 0.3 K’↓ k K↑ 3/4/14 5/8 Variation with chemical potential (a) 0.05 D= e2 (kF ↑ vF ↑ + kF ↓ vF ↓ ) 2κ -0.7 0.03 0.02 E (eV) with 0.04 ω (eV) First plasmon has dispersion √ ω1 (q) = D q (b) 0.01 -0.8 00 0.1 0.2 q (nm-1) 0.3 K’↓ k K↑ Second plasmon has dispersion ω2 (q) ≈ vF ↓ q Re εRPA 100 0 -100 -200 -300 0 D.S.L. Abergel (Nordita) Plasmons in TMDs 0.02 0.04 0.06 q (nm-1) 0.08 3/4/14 0.1 5/8 Variation with chemical potential (a) 0.05 D= e2 (kF ↑ vF ↑ + kF ↓ vF ↓ ) 2κ -0.7 0.03 0.02 E (eV) with 0.04 ω (eV) First plasmon has dispersion √ ω1 (q) = D q (b) 0.01 -0.8 00 0.1 0.2 q (nm-1) 0.3 K’↓ k K↑ Second plasmon has dispersion ω2 (q) ≈ vF ↓ q Re εRPA 100 0 -100 -200 -300 0 D.S.L. Abergel (Nordita) Plasmons in TMDs 0.02 0.04 0.06 q (nm-1) 0.08 3/4/14 0.1 5/8 Variation with chemical potential 0.05 D= e2 (kF ↑ vF ↑ + kF ↓ vF ↓ ) 2κ -0.7 0.03 0.02 E (eV) with 0.04 ω (eV) First plasmon has dispersion √ ω1 (q) = D q 0.01 -0.8 00 0.1 0.2 q (nm-1) 0.3 K’↓ k K↑ Second plasmon has dispersion ω2 (q) ≈ vF ↓ q Re εRPA 100 0 -100 -200 -300 0 D.S.L. Abergel (Nordita) Plasmons in TMDs 0.02 0.04 0.06 q (nm-1) 0.08 3/4/14 0.1 5/8 Variation with chemical potential 0.05 D= e2 (kF ↑ vF ↑ + kF ↓ vF ↓ ) 2κ -0.7 0.03 0.02 E (eV) with 0.04 ω (eV) First plasmon has dispersion √ ω1 (q) = D q 0.01 -0.8 00 0.1 0.2 q (nm-1) 0.3 K’↓ k K↑ Second plasmon has dispersion ω2 (q) ≈ vF ↓ q Re εRPA 100 0 -100 -200 -300 0 D.S.L. Abergel (Nordita) Plasmons in TMDs 0.02 0.04 0.06 q (nm-1) 0.08 3/4/14 0.1 5/8 Spectral function A(q, ω) = −ImχRPA (q, ω) 0.05 MoS2 µ = -0.8eV α = 20meV 40 20 0.03 0 0.02 Re ε(q,ω) ω (eV) 0.04 -20 A(q,ω) (arb. units) The spectral function is 8 q = 0.05 nm-1 q = 0.10 nm-1 q = 0.15 nm-1 q = 0.20 nm-1 6 4 2 0.01 -40 0 0 0.1 0.2 0.3 q (nm-1) 0.4 0.5 00 0.01 0.02 ω (eV) 0.03 0.04 Vertical lines mark edge of two continua. Quasiparticle peak corresponding to linear plasmon clear between the two continua. Lineshape not Lorentzian Peak narrows and increases in height above quasiparticle background as q increases. D.S.L. Abergel (Nordita) Plasmons in TMDs 3/4/14 6/8 Prospects for observation Zeeman field required is of the order of meV. Magnetic field to produce this Zeeman is ∼ 20T if applied perpendicular to the TMD plane. I But this will necessarily cause Landau levels to form, which have to be taken into account in the calculation. Rotating the field in plane means requiring stronger field ∼ 40T due to anisotropy of TMD g-factor. Another approach is to use proximity effect of ferromagnetic material. I I Proximity-induced Zeeman field has been shown in Bi2 Se3 /EuS heterostructures. Strained, ultra thin LaSrMnO films have Curie temperature ∼ 500K. D.S.L. Abergel (Nordita) Plasmons in TMDs 3/4/14 7/8 Summary TMDs in a Zeeman field show additional plasmon mode. I Linear dispersion Appropriate tuning of parameters needed. Experimental technology probably within reach to see such plasmons in heterostructures with ferromagnetic layers. See arXiv:1402.5274. 0.05 MoS2 µ = -0.8eV α = 20meV 40 20 0.03 0 0.02 Re ε(q,ω) ω (eV) 0.04 -20 0.01 -40 0 D.S.L. Abergel (Nordita) 0 0.1 0.2 0.3 q (nm-1) Plasmons in TMDs 0.4 0.5 3/4/14 8/8
© Copyright 2024 ExpyDoc