RocFall 5.0 Statistical Analysis of Rockfalls Collision Analysis Verification Manual © 2007-2013 Rocscience Inc. Table of Contents RocFall Collision Verification Problems 1 Comparison between Lump Mass and Rigid Body Formulations ............................... 1 2 West Rifle Test Site ..................................................................................................... 5 3 Glenwood Canyon Example ........................................................................................ 7 1 1.1 Comparison between Lump Mass and Rigid Body Formulations Problem Description In this problem, the output using lump mass or rigid body formulations are compared against each other. Rocfall 4.0 uses the lump mass formulation, which assumes rocks as point masses. Rocfall 5.0 has an additional engine using rigid body mechanics, which incorporates shape into impact calculations. In this study, a very small radius is used for a spherical rock to eliminate any shape effects when comparing results. Angular velocity is not considered. Three cases are used in the analysis: Case 1: Seeder Properties Initial Location (X0, Y0) = (0, 0) Initial Velocity Vx = 3.5 m/s Vy = 0 m/s Rock Properties Mass: 10 kg Density: 2.1x106kg/m3 Case 2: Seeder Properties Initial Location (X0, Y0) = (0, 10) Initial Velocity Vx = 2 m/s Vy = 0 m/s Rock Properties Mass: 10 kg Density: 2.1x106kg/m3 Lump Mass Parameters Normal Restitution Tangential Restitution Dynamic Friction Slope Roughness = 0.7 =1 =0 =0 Rigid Body Parameters Normal Restitution Dynamic Friction Rolling Friction = 0.7 =0 =0 Lump Mass Parameters Normal Restitution Tangential Restitution Dynamic Friction Slope Roughness = 0.7 =1 =0 =0 Slope Coordinates X 0 3.05 6.71 9.75 13.41 20 22 22.199 Y 0 -12.19 -12.19 -24.38 -24.99 -24.99 -24.99 -24.99 Slope Coordinates X 0 25 Y 0 0 Rigid Body Parameters Normal Restitution Dynamic Friction Rolling Friction = 0.7 =0 =0 1 Case 3: Seeder Properties Initial Location (X0, Y0) = (0, 5) Initial Velocity Vx = 6 m/s Vy = 0 m/s Rock Properties Mass: 10 kg Density: 2.1x106kg/m3 1.2 Lump Mass Parameters Normal Restitution Tangential Restitution Dynamic Friction Slope Roughness = 0.7 =1 =0 =0 Slope Coordinates X 0 10 20 32 Y 0 0 -2.68 -2.68 Rigid Body Parameters Normal Restitution = 0.7 Dynamic Friction =0 Rigid Body Parameters Rolling Friction =0 Results Bounce Height (m) Figure 1-1 to Figure 1-6 presents the bounce height and total kinetic energy graphs for Case 1, 2 and 3. The results using the lump mass formulation compare well with the rigid body formulation. They are almost identical. 20 18 16 14 12 10 8 6 4 2 0 Lump Mass Rigid Body 0 5 10 15 Location (m) 20 25 Figure 1-1: Bounce height for Case 1 2 Total Kinetic Energy (J) 2000 1800 1600 1400 1200 1000 800 600 400 200 0 Lump Mass Rigid Body 0 5 10 15 Location (m) 20 25 Figure 1-2: Total kinetic energy for Case 1 Bounce Height (m) 12 10 Lump Mass 8 Rigid Body 6 4 2 0 0 5 10 15 Location (m) 20 25 Figure 1-3: Bounce height for Case 2 Total Kinetic Energy (J) 1200 Lump Mass 1000 Rigid Body 800 600 400 200 0 0 5 10 15 Location (m) 20 25 Figure 1-4: Total kinetic energy for Case 2 3 Bounce Height (m) 6 5 Lump Mass 4 Rigid Body 3 2 1 0 0 5 10 15 Location (m) 20 25 30 Figure 1-5: Bounce height for Case 3 Total Kinetic Energy (J) 800 700 Lump Mass 600 Rigid Body 500 400 300 200 100 0 0 5 10 15 Location (m) 20 25 30 Figure 1-6: Total kinetic energy for Case 3 1.3 Input files V001 - Comparing Formulations - Case 1 (Lump Mass).fal5 V001 - Comparing Formulations - Case 1 (Rigid Body).fal5 V001 - Comparing Formulations - Case 2 (Lump Mass).fal5 V001 - Comparing Formulations - Case 2 (Rigid Body).fal5 V001 - Comparing Formulations - Case 3 (Lump Mass).fal5 V001 - Comparing Formulations - Case 3 (Rigid Body).fal5 4 2 2.1 West Rifle Test Site Problem description This problem verifies the average bounce height and translational velocity using the results from the Colorado Rockfall Simulation Program (CRSP) [1]. CRSP calibrated its simulation using data collected from a 300 feet high hillside near Rifle, Colorado. The slope material consists of thin desert soil with rocky ledges and sparse vegetation. 5000 spherical rocks are used in the analysis using the lump mass formulation. The slope model and material properties are presented in Figure 2-1 and Table 2-1. Initial Location X0 = 1.32 ft Y0 = 325 to 330 ft Initial Velocity Vx = 1 ft/s Vy = -1 ft/s Rock Properties Radius: 2.2 ft Mass: 7358 lb Cell #1 2 3 4 5 6 8 7 9 10 11 12 13 Figure 2-1: Slope model Table 2-1 Slope material properties 1 Normal Coefficient of Restitution 0.25 Tangential Coefficient of Restitution 0.82 2 0.32 3 Dynamic Friction Surface Roughness (°) Beginning X, Y Ending X, Y 0 5.15 0, 320 8, 314 0.84 0 20 8, 314 18, 304 0.32 0.84 0 15 18, 304 34, 290 4 0.32 0.84 0 25 34, 290 66, 258 5 0.30 0.84 0 15 66, 258 92, 240 6 0.30 0.84 0 9.99 92, 240 120, 214 7 0.30 0.83 0 9.99 120, 214 199, 164 8 0.33 0.82 0 12.22 199, 164 260, 140 9 0.33 0.82 0 9.99 260, 140 269, 138 10 0.34 0.84 0 16.23 269, 133 305, 110 11 0.34 0.84 0 14.31 305, 108 335, 90 12 0.34 0.84 0 9.99 335, 87 396, 51 13 0.34 0.85 0 5.15 396, 51 410, 49 Cell # 5 2.2 Results The average bounce height and translational velocity are presented in Figure 2-2 and Figure 2-3. The results obtained from Rocfall compare well with the CRSP model. Maximum Bounce Height (ft) 16 Rocfall CRSP 14 12 10 8 6 4 2 0 0 50 100 150 200 250 300 Horizontal Location (ft) 350 400 450 Figure 2-2: Average bounce height for horizontal locations along the slope Maximum Translational Velocity (ft/s) 100 Rocfall CRSP 80 60 40 20 0 0 50 100 150 200 250 300 Horizontal Location (ft) 350 400 450 Figure 2-3: Average translational velocity for horizontal locations along the slope 2.3 References 1. Pfeiffer, T.J. (1989). Rockfall Hazard Analysis Using Computer Simulation of Rockfalls. (Doctoral Dissertation). Colorado School of Mines, Golden, Colorado. 2.4 Input files V002 - West Rifle Slope (Lump Mass).fal5 6 3 3.1 Glenwood Canyon Example Problem Description This problem verifies the average bounce height and translational velocity using the results from the Colorado Rockfall Simulation Program (CRSP) [1]. CRSP calibrated its simulation using data collected from quartzite cliffs 750 feet above Interstate 70 (I-70) in Glenwood Canyon, Colorado. The study was for the design of rockfall mitigation after rockfall incidents damaged two retaining walls under construction. The upper third of the slope is granitic bedrock with sparse vegetation and a thin soil cover, while the other two thirds above I-70 is talus cover with scattered shrubs. 5000 spherical rocks are used in the analysis using the lump mass formulation. The slope model and material properties are presented in Figure 3-1 and Table 3-1. Initial Location X0 = 0 ft Y0 = 800 to 810 ft Initial Velocity Vx = 1 ft/s Vy = -1 ft/s Rock Properties Radius: 2.2 ft Mass: 3761 lb Retaining Wall I-70 Cell #1 2 3 4 5 6 7 8 9 10 11 12 14 15 13 Figure 3-1: Slope model 7 Table 3-1 Slope material properties 1 Normal Coefficient of Restitution 0.35 Tangential Coefficient of Restitution 0.85 2 0.35 0.85 3 0.35 4 Dynamic Friction Surface Roughness (°) Beginning X, Y Ending X, Y 0.60 0.65 25 0, 794 224, 620 25 224, 620 248, 610 0.85 0.65 25 248, 600 306, 540 0.32 0.81 0.65 10 306, 530 385, 480 5 0.32 0.81 0.40 20 385, 480 500, 390 6 0.32 0.81 0.40 18 500, 390 557, 360 7 0.31 0.80 0.40 25 557, 360 848, 157 8 0.31 0.80 0.50 10 848, 157 925, 110 Cell # 9 0.31 0.82 0.65 0 925, 110 933, 110 10 0.32 0.80 0.65 0 933, 95 968, 80 11 0.40 0.90 0.65 0 968, 78 1002, 78 12 0.32 0.80 0.65 0 1002, 60 1069, 25 13 0.32 0.82 0.65 0 1069, 25 1075, 27 14 0.40 0.90 0.65 0 1075, 27 1104, 27 15 0.32 0.82 0.65 0 1104, 27 1153, 4 3.2 Results The average bounce height and translational velocity are presented in Figure 3-2 and Figure 3-3. The results obtained from Rocfall compare well with the CRSP model. Maximum Bounce Height (ft) 40 Rocfall CRSP 35 30 25 20 15 10 5 0 0 200 400 600 800 Horizontal Location (ft) 1000 1200 Figure 3-2: Average bounce height for locations along the slope 8 Maximum Translational Velocity (ft/s) 90 80 70 60 50 40 30 20 10 0 Rocfall CRSP 0 200 400 600 800 Horizontal Location (ft) 1000 1200 Figure 3-3: Average translational velocity for locations along the slope 3.3 Input Files V003 - Glenwood Canyon Example (Lump Mass).fal5 3.4 References 1. Pfeiffer, T.J. (1989). Rockfall Hazard Analysis Using Computer Simulation of Rockfalls. (Doctoral Dissertation). Colorado School of Mines, Golden, Colorado. 9
© Copyright 2024 ExpyDoc