Restricted Dimensional Assemblies Solid Solutions Solid Solutions • Many pure elements dissolve large quantities of other elements to form “solid solutions” or “alloys” (Latin alligare, “bind”) • Substitutional (Cu-Ni, Au-Ag, Ti-Zr, K-Rb, SiGe, Se-Te, NaCl-KCl) • Interstitial (H, C, B, O, N) • Solid solutions may be disordered or ordered Systematics • William Hume-Rothery (1899 —1968) • Oxford University, first chair of Metallurgy, 1958 • the “Hume-Rothery Rules” Hume-Rothery Rule 1 • SIZE EFFECT • If the difference between atomic radii of the elements forming an alloy exceeds 15%, solid solubility is restricted (a “negative” rule) • Hume-Rothery used the closest distance of approach of atoms in the structure of each pure element as measure of atomic size Complete Solubility • Cu + Ni • rCu = 0.128 nm, rNi = 0.125nm • Δr/r = 2.3% (<15%), H-R #1 applies • Cu and Ni comprise a “binary isomorphous” system; complete miscibility for any composition °C 1800 10 20 30 40 50 1700 1600 at. % Ni 60 70 80 90 L 1500 1455° 1400 1300 1200 1100 1084.87° 1000 L+! ! 900 800 700 Cu 10 20 30 40 50 60 wt. % Ni 70 80 90 Ni Restricted Solubility • Cu + Sn • rCu = 0.128 nm, rNi = 0.158nm • Δr/r ≈ 23% (>15%), H-R #1 does NOT applies • Cu and Sn exhibit limited solubility 1100 at % Sn 10 20 30 40 50 60 70 80 90 1085° 1000 900 800 T (°C) 700 600 " 500 400 L 799° ! 586° 520° 756° # ' 640° & $ 415° 350° 300 200 100 % 189° 232° 186° %’ !(Sn 0 Cu 10 20 30 40 50 60 70 80 90 Sn wt % Sn Hume-Rothery Rule 2 • ELECTRONEGATIVE VALENCE EFFECT • The likelihood of formation of a stable phase is increased as one of the elements becomes more electronegative and the other more electropositive Galvanic Series Noble (cathodic) Active (anodic) Platinum Gold Graphite Titanium Stainless Steel Copper Brass Nickel Tin Steel Aluminum Zinc Magnesium Electronegative (gains electrons) Electropositive (loses electrons) 1100 1064.43° 1000 900 L 800 rAu = 0.144 nm 700 600 rSn = 0.158 nm 500 Δr/r = 9.7% (Au) 86.2 418° 490° 95.8 400 °C 300 309° 231.9681° 200 0.3 10 100 ! Sn 0 Sn 10 252° 280° 80 217° " # $ 20 30 40 50 60 70 wt % Au % 80 90 Au Hume-Rothery Rule 3 • RELATIVE VALENCE EFFECT • Elements with lower valence dissolve more readily in elements of higher valence • Observation: monovalent Cu, Ag and Au dissolve in B-subgroup elements having valences >1 • For polyvalent elements, relative valence rule is less general Extended Packing • When size difference exceeds 15% (notably 1.225:1), Laves phases, composition AB2, may be favored • Known examples ≈ 360 • Basic layer of smaller atoms stacked in either cubic or hexagonal arrangement • Larger atoms have CN = 16 C14 Laves Phases • Three basic structures • C15 (cubic, MgCu2) • C14 (hexagonal, MgZn2) • C36 ( hexagonal MgNi2) • Smaller atoms sometimes in icosahedral coordination with larger atoms C15 Strukturbericht • A Elements (uniary systems) • B 1:1 stoichiometry • E Perovskites • C 1:2 stoichiometry • H Spinels • D 1:3 stoichiometry • L long-period ordering Ref: Strukturbericht, Akademische Verlagsgesellschaft M.B.H., Leipsig, Germany (1913 - 1939); continued as Structure Reports, International Union of Crystallography, (1940 - present) DO3 Structure Ni at ! Ni at 0,1 Ni at ! Sn at 0,1 Sn at ! Sn at 0,1 Ni at ",# Ni at ",# Ni at 0,1 Ni at ! Ni at 0,1 Sn at ! Sn at 0,1 Sn at ! Ni at ",# Ni3Sn Ni at ",# Ni at ! Ni at 0,1 Ni at ! Sn at 0,1 Sn at ! Sn at 0,1 rNi = 0.125 nm rSn = 0.158 nm 1500 at % Sn 20 30 40 50 60 70 80 90 10 1455° 1400 L 1300 1266° 1200 19.0 1100 T (°C)1000 900 1132° 1176° 32.5 " ! cubic DO3 978° 922° 38.0 851° 43.1 800 796° 700 600 Ni3Sn !’ # 89.3 hexagonal DO19 $ 500 400 Ni 10 20 30 40 50 60 70 80 90 Sn wt % Sn Perovskite Unit Cell z • Lattice = simple cubic (lattice points at corners of cube) • Motif = 1 Ca2+ at 0,0,0; 1 Ti4+ at ½,½,½; and 3 O2- at ½,½,0, 0,½,½, and ½,0,½ y x Perovskites NaNbO3 CaTiO3 CaSnO3 BaPrO3 YAlO3 KMgF3 KNbO3 SrTiO3 SrSnO3 SrHfO3 LaAlO3 PbMgF3 NaWO3 BaTiO3 BaSnO3 BaHfO3 LaCrO3 KNiF3 CdTiO3 CaCeO3 BaThO3 LaMnO3 KZnF3 PbTiO3 SrCeO3 CaZrO3 BaCeO3 SrZrO3 CdCeO3 BaZrO3 PbCeO3 PbZrO3 LaFeO3 Spinel • Formula A2+B3+2O4 • Eight (8) formula units per cubic unit cell (eight divalent cations, 16 trivalent cations, 32 oxygen anions), with oxygen anions in close-packed configuration • “Normal” spinel: divalent cations on tetrahedral sites; trivalent cations on octahedral sites • “Inverse” spinel: trivalent cations on tetrahedral sites and 1/2 of the octahedral sites; divalent cations on remaining 1/2 of octahedral sites. Top View tetrahedral sites octahedral sites Spinel • Lattice = face-centered cubic • Basis (motif) = 14 ions • two divalent cations • four trivalent cations • eight oxygen anions Spinels Normal SnMg2O4 MgAl2O4 FeV2O4 SrAl2O4 WNa2O4 CrAl2O4 MoAl2O4 FeAl2O4 CoAl2O4 NiAl2O4 CuAl2O4 ZnAl2O4 CoFe2O4 ZnK2(CN)4 NiFe2O4 CdK2(CN)4 AlFe2O4 HgK2(CN)4 PbFe2O4 MgCo2O4 TiCo2O4 CuCo2O4 CoCo2O4 Inverse CuCr2S4 CoCo2S4 CuRh2S4 FeCr2S4 MnCr2S4 MgFe2O4 TiMg2O4 VMg2O4 SnZn2O4 MgGa2O4 MgIn2O4 FeIn2O4 CoIn2O4 NiIn2O4 Ordering z • CuAuI is tetragonal, c/a ≈ 0.93 • Orders below Tc = 385°C • Ordering produces change in Bravais lattice (cubic to tetragonal), P4/mmm • Strukturbericht L10 y x L α Cu3Au CuAu 400 I Cu II CuAu3 Au Long Period Order • CuAuII is a “long-period superlattice” • Ordering occurs 410°C - 385°C • Orthorhombic; b/a = 10.02; c/a ≈ 0.92 • Large unit cell comprised of 5 each CuAuI cells sideby-side, shifted by c/2 L c α Cu3Au CuAu 400 b a I Cu II CuAu3 Au Clustering L ΔGm α A β %B B CLUSTERING L “spinodes” ∂ 2 (∆Gm ) = 0 2 ∂x ΔGm SI A SII %B B Spinodal Decomposition 100 nm Cu-Ni-Fe 100 nm Phase Separation • Decomposition of a solid solution can occur by • nucleation & growth, either • homogenous or • heterogeneous, or by • spinodal decomposition • Control of thermodynamics and kinetics essential Nano Assembly • Formation of solid solutions governed by HumeRothery rules • Solid solutions are susceptible to decomposition by phase separation (clustering) or disordering • Ordered solid solutions generally more resistant to decomposition Development of Interfacial Structure Epitaxy Greek: epi “upon” + taxis “arrangement” Epitaxial Growth • Occurs on a substrate (“substratum”) to induce a specific crystalline arrangement within the growing crystal • Homoepitaxy (crystal A on substrate A) • Heteroepitaxy (crystal B on substrate A) • Deposition from vapor phase (VPE, MBE); deposition from liquid phase (LPE); reaction in solid phase (SPE) Epitaxial Growth • E. Bauer, Z. Kristallogr., 110, 423 (1958) • W.A. Jesser and J.H. van der Merwe, in Dislocations in Solids, F.R.N. Nabarro, Ed., Elsevier, Amsterdam (1989), p. 41 • G.H. Gilmer, in Handbook of Crystal Growth, Vol. 1, D.T.J. Hurle, Ed., Elsevier, Amsterdam (1993), p. 584 Frank-Van der Merwe Film Substrate Stranski-Krastanov Film Substrate Volmer-Weber Film Substrate Columnar Film Substrate Interfacial Structure • Exerts a profound influence on the morphology of thin films during epitaxial growth • Control of original substrate/film interface • Structural (“lattice matching”) • Compositional (interphase formation) End Lecture 05
© Copyright 2025 ExpyDoc