Lecture #5

laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
Mechanics of Nano- and Micro- Materials
Nanoindentation/Nanocompression
Diana Courty, Ralph Spolenak
Based on a Tutorial given by T. Buchheit, Sandia National Labs
FS 2009
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
0. Introduction
Nanoindentation: Mechanical test at the nanoscale
 Simple principle:
A hard tip with a well defined geometry
is pressed into the sample, while the
evolution of the applied load and the
displacement of the tip during loading
and unloading is measured.
 Sample geometry:

Thin films

Lines, colloids, columns, …
 Mechanical properties:

Hardness and Young’s modulus

Yield strength (with adequate choice of tip and sample geometry)
Diana Courty, D-MATL, [email protected]
2
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
0. Introduction
Outline
 1. Contact mechanics
 2. Testing (quasistatic)
 3. Analysis methods
 4. Factors affecting nanoindentation test data
 5. Other techniques in Nanoindentation

fracture toughness
 dynamic methods
 …
Diana Courty, D-MATL, [email protected]
3
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
1. Contact mechanics
Elastic contact (Hertz)
Diana Courty, D-MATL, [email protected]
4
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
1. Contact mechanics
Geometrical similarity in pyramidal tips
Diana Courty, D-MATL, [email protected]
5
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
1. Contact mechanics
Elastic-plastic contact
 For the determination of hardness, the
examined material must be plastically
deformed

Criterion of Hertz (1857-1894):
An absolute value for hardness is the least
value of pressure beneath a spherical
indenter necessary to produce a
permanent set at the center of the area of
contact.
Indent on Thin Gold Film
(0.5 mm, polycrystalline, gradient
picture)
 H ≈ CY
with C ≈ 3 (for metals)
and Y = yield stress (stress at which plastic yielding first occurs)
Diana Courty, D-MATL, [email protected]
6
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
2. Testing
Device
 Hysitron TriboIndenter

XY staging system

Top-down optics

TriboScanner
Stage, TriboScanner with Transducer and Optical Device
- Tandem piezoelectric ceramic tube
- Imaging of the surface

Transducer assembly
- Three-plate capacitive design
- Maximum force: 10 mN
- Maximum depth: 5 μm

Pros and cons:
- + automation easy
- - bad optics
Diana Courty, D-MATL, [email protected]
7
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
2. Testing
Device
 CSM Ultra Nanoindenter (UNHT)

XYZ staging system

Top-down optics

Transducer assembly
- Active reference
- Maximum force: 100 mN
- Maximum depth: 50 μm

Pros and cons:
- + very good optics
(microscope magnification
from 200x to 4000x)
- - automation more tedious, just
one sample at a time
Diana Courty, D-MATL, [email protected]
8
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
2. Testing
Tip geometries

Three-Sided Pyramidal Tips

Berkovich
- Standard for nanoindentation
- Bulk materials and thin films
greater than 100 nm thick

Cube Corner
- Ultra thin films, hard coatings
Three-Sided Pyramidal Tips
(Handbook of Nanotechnology, Spinger Verlag)
- Light load scratching


Cono-Spherical Tips

Cone angle 60°, 90°, 120°

Radius <3 µm: Soft polymers

Radius >3 μm: Very soft polymers
and biological samples
Flat punch (special applications)
Conical Tip
(Tip Selection Guide, HYSITRON)
Diana Courty, D-MATL, [email protected]
9
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
2. Testing
Load functions (quasistatic)
1400
 Load Function
t
me
n
se
g
600
Open loop

Feedback control
ing
Lo
t
200
0
0
 Modes of Operation

en
ad
400
eg
Load rate or displacement rate
(segment time)
800
gs
Maximum force or maximum
displacement
Load (mN)
Composed of segments
din

Hold time
1000
loa

1200
Un

Loading Rate: 100 mN/sec
2
4
6
8
10
12
14
16
18
20
22
24
26
28
Time (sec)
O loop and load control mode
- Load control
- Displacement control

Partial unload

Scanning probe microscopy (SPM)
Diana Courty, D-MATL, [email protected]
Partial unload with 20 cycles
10
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
2. Testing
Load-displacement curves I
 Idealized load-displacement
curves for materials with a wide
range of hardness and elastic
properties.
Load/Displacement Curves
(Handbook of Nanotechnology, Spinger Verlag, 2004)
Diana Courty, D-MATL, [email protected]
11
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
 “Real” load-displacement
curve showing pop-in events
(discrete yielding events
separated by elastic
deformation (Corcoran et
al.,1997)).
Load [μN]
2. Testing
Load-displacement curves II
“Pop-in”
Indentation Depth [nm]
 Load-displacement curve
8000
Load, P [mN]
from partial unload mode
showing material flowing
during hold time.
1000 nm Au film
10000
6000
4000
2000
0
0
200
400
600
800
1000
Displacement, h [nm]
Diana Courty, D-MATL, [email protected]
12
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
2. Testing
Load-displacment curves III
Diana Courty, D-MATL, [email protected]
13
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
3. Analysis
Oliver-Pharr method
f
Diana Courty, D-MATL, [email protected]
14
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
3. Analysis
Determination of hardness
Diana Courty, D-MATL, [email protected]
15
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
3. Analysis
Determination of Young‘s modulus
Diana Courty, D-MATL, [email protected]
16
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
3. Analysis
Area function
nanometallurgy
A(h)
h
Diana Courty, D-MATL, [email protected]
17
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
4. Factors affecting nanoindentation test data
 Indenter geometry
 Machine compliance*
 Thermal drift
 Creep
 Pile-up/sink-in*
 Indentation size effect*
 Surface roughness
 …
Diana Courty, D-MATL, [email protected]
18
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
4. Factors affecting nanoindentation test data
Machine compliance
Diana Courty, D-MATL, [email protected]
19
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
4. Factors affecting nanoindentation test data
The effect of machine compliance
Diana Courty, D-MATL, [email protected]
20
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
4. Factors affecting nanoindentation test data
Indentation pile-up or sink-in
Pile-up
Diana Courty, D-MATL, [email protected]
21
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
4. Factors affecting nanoindentation test data
The effect of indentation pile-up
Diana Courty, D-MATL, [email protected]
22
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
4. Factors affecting nanoindentation test data
Indentation size effect (ISE)
 Increased hardness with decreasing indentation depth
 Geometrically necessary dislocations in the form of circular dislocation loops
 Presence of dislocations → increase of the effective yield strength → H↑
Gao and Huang, Scripta Materialia 48 (2003) 113–118
Lu et al., Key Engineering Materials Vol. 312 (2006) pp 363-368
Diana Courty, D-MATL, [email protected]
23
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
4. Factors affecting nanoindentation test data
Impact of substrate
 Ideally indentations so small that there is no impact of the substrate
(often not possible)
 Rule of thumb:

10% of film thickness if hardness is of interest

Young’s modulus nearly always influenced by substrate
Saha and Nix, Acta Materialia 50 (2002) 23–38
Diana Courty, D-MATL, [email protected]
24
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
4. Factors affecting nanoindentation test data
Impact of substrate Saha and Nix, Acta Materialia 50 (2002) 23–38
Diana Courty, D-MATL, [email protected]
25
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
5. Other techniques in nanoindentation
 Dynamic testing
 Fracture toughness
 Compression tests
 Constant strain rate, creep tests, adhesion experiments, …
Diana Courty, D-MATL, [email protected]
26
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
5. Other techniques in nanoindentation
Quasistatic vs. Dynamic Testing
 Quasistatic testing and standard analysis
1400
Loading Rate: 100 mN/sec
Quasistatic Testing
1200
t
en
gm
t
Lo
en
ad
400
eg
ing
gs
se
600
din
and biomaterials, exhibit time-dependent
loa
 Viscoelastic materials, such as polymers
800
Un
material behavior.
Hold time
1000
Load (mN)
techniques assume elastic-plastic
200
0
0
2
4
6
8
10
12
14
16
18
20
22
24
26
28
Time (sec)
properties.
The analysis of the viscoelastic properties
Dynamic Testing
requires dynamic testing.
 Several mechanical properties can be
measured as a continuous function of
depth in a single indentation.
→ Dynamic testing can be used on most materials, including metals and ceramics!
Diana Courty, D-MATL, [email protected]
27
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
5. Other techniques in nanoindentation
Dynamic Testing
 The Dynamic Mechanical Analysis
(DMA) uses sine wave loading curves.
 HYSITRON offers three test types:

Frequency test → strain-rate
dependency of materials

Variable load test → depth profiling

Variable load amplitude test →
determining the linear viscoelastic
region (constant ratio of amplitude
and mean load)
 The drive frequency ω can be defined in
Sine Wave Loading Curves
a range of 0.1 to 300 Hz.
Diana Courty, D-MATL, [email protected]
28
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
5. Other techniques in nanoindentation
Dynamic Testing – Data Analysis
 Displacement amplitude Χ and phase shift δ
of the of the displacement signal are
measured (offset in time scale of the red
viscoelastic curve compared to the green
elastic curve)
 From the data Χ, δ and ω the stiffness of
the contact S and the damping of the
material Cs is calculated.
 Storage modulus
 Loss modulus
 Loss factor
E 
E  
tan d =
Sinusoidal Test:
Applied force/displacement (elastic
response, viscoelastic response) vs. time
S 
2 Ac
Cs 
2 Ac
w Cs
S
Diana Courty, D-MATL, [email protected]
29
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
5. Other techniques in nanoindentation
Dynamic Testing - Example
 Thin polymer film with mineral platelets, ~400nm thick, on Si substrate
Load-Displacement Data of Nanocomposite
(Average curve from five load experiments.)
Storage and Loss Modulus of Nanocomposite
(Average curve from four load experiments.)
Diana Courty, D-MATL, [email protected]
30
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
5. Other techniques in nanoindentation
Fracture toughness by indentation
Diana Courty, D-MATL, [email protected]
31
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
5. Other techniques in nanoindentation
Compression tests



Compression tests on small columns
Uchic et al., 2004

Ni, Ni3Al-Ta and Ni superalloys

Column diameter: 0.5 μm – 40 μm

Transition from bulk to size
limited behavior at ~42 μm
Greer and Nix, 2005

Au columns <001> with
a diameter of 0.3 μm – 7.5 μm

Flow stress at 10% strain:
4.5 GPa (~0.03 GPa for bulk gold,
theoretical strength: ~12 GPa)
Dependence on the Yield Strength
on d-½ for Ni3Al-Ta
(Uchic et al., 2004)
Diana Courty, D-MATL, [email protected]
SEM Image of Ni
Superalloy sample
after testing
(Uchic et al., 2004)
32
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
5. Other techniques in nanoindentation
High temperature tests
 Getting material parameters at high T
 Problems: T difference between material and tip  drift
M.Wheeler et al. / Surface & Coatings Technology 254 (2014) 382–387
Diana Courty, D-MATL, [email protected]
33
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
5. Other techniques in nanoindentation
High temperature tests
M.Wheeler et al. / Surface & Coatings Technology 254 (2014) 382–387
Diana Courty, D-MATL, [email protected]
34
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
5. Other techniques in nanoindentation
Adhesion tests
 Alumina platelets in epoxy matrix
 Complex FIB (Focused Ion beam) preparation method
Phd thesis, 2014, Matthias Schamel
Diana Courty, D-MATL, [email protected]
35
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
Phd thesis, 2014, Matthias Schamel
Diana Courty, D-MATL, [email protected]
36
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
5. Other techniques in nanoindentation
Adhesion tests (Cantilever-shear test)
 FIB fabrication

U-shaped cut

Undercut

Deposit

Polishing
 Mechanical testing with sharp
indenter (Nanoindentation)
Phd thesis, 2014, Matthias Schamel
Diana Courty, D-MATL, [email protected]
37
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
 Stage I: Elastic loading
 Stage II: Progressive debonding
 Stage III: Frictional sliding
Phd thesis, 2014, Matthias Schamel
Diana Courty, D-MATL, [email protected]
38
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
5. Other techniques in nanoindentation
Pull-out experiments
 Glass fibre reinforced plastics (about 10 µm diameter)
 Flatpunch used
 Challenges: - sample preparation
- hitting the right spot
Diana Courty, D-MATL, [email protected]
39
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
5. Other techniques in nanoindentation
Pull-out experiments
Diana Courty, D-MATL, [email protected]
40
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
5. Other techniques in nanoindentation
Fracture resistance of hard coatings
 SiC crystal double cantilever
beam
 Size effects of micro DCB
compression: (a) yielding in
smaller GaAs struts with slip
bands (arrowed), while (b)
larger struts remain elastic.
Liu et al., Applied physics letters 102, 171907 (2013)
Diana Courty, D-MATL, [email protected]
41
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
Cracking in micro DCBs made from (a)
CrN coating and (b) CrAlN/
Si3N4 coating.
Liu et al., Applied physics letters 102, 171907 (2013)
Diana Courty, D-MATL, [email protected]
42
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
5. Other techniques in nanoindentation
Fracture resistance - Pillar cracking
 A novel pillar indentation splitting test for measuring fracture
toughness of thin ceramic coatings (here TiN)
Sebastiani et al., Philosophical Magazine, 2014
http://dx.doi.org/10.1080/14786435.2014.913110
Diana Courty, D-MATL, [email protected]
43
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
5. Other techniques in nanoindentation
Scratch testing
 Typical load profile
 Scratch on ZrO2 scanned with 2
D transducer
Diana Courty, D-MATL, [email protected]
44
laboratory for
Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
nanometallurgy
5. Other techniques in nanoindentation
Hardness mapping Hysitron application note, 2014
 900 indents, 2.5 µm apart
 lightly deformed (5%)
polycrystalline copper specimen
 local hardness in the vicinity of
the twin boundaries
substantially higher than that of
the surrounding matrix
Diana Courty, D-MATL, [email protected]
45