De l'acquisition à la compression des objets 3D – AC’3D Juin 2014 Towards Perceptual Quality Evaluation of Dynamic Meshes Fakhri TORKHANI, Kai WANG and Jean-Marc CHASSERY Introduction 3D Mesh, a collection of : o Vertices o Edges o Faces o V changes over time (Dynamic mesh) gipsa-lab 1 Introduction 3D mesh Acquisition Processing Reality 3D mesh Distortion MRI 3D camera 3D scanner Imagination Compression, Watermarking, Remeshing, Etc.. CAD How to measure the perceptual quality? gipsa-lab Visualization 2 Rendering, Stereoscopic Display, Etc.. Introduction Perceptual quality of 3D meshes: Subjective quality • Based on human judgments Objective-perceptual quality metrics • Based on Human Visual System (HVS) properties • Established through lab experiments • The ground truth • Can be integrated to guide: compression, watermarking, remeshing, etc. • Should correlate with subjective opinions gipsa-lab 3 Outline Introduction I. Perceptual quality assessment of 3D meshes II. Dynamic meshes subjective quality database III. Objective quality metrics performances on dynamic meshes IV. Towards a perceptual quality metric for dynamic meshes Conclusion gipsa-lab 4 Geometric distance quality metrics Geometric distance of static meshes • Root Mean Square error • Hausdorff distance : , with: Geometric distance of dynamic meshes A= coordinates • Karni and Gotsman metric XFrame1 …. XFrame n YFrame1 …. YFrame n ZFrame1 …. ZFrame n time gipsa-lab 5 Geometric distance quality metrics Geometric distance between static meshes: Fail to predict the perceptual quality ! Watermarked models by the method of [Wang et al.2011] Original models gipsa-lab 6 Watermarked models by the method of [Cho et al. 2007] Perceptual quality metrics MSDM2: Mesh Structural Distortion Measure [Lavoué et al. 2006], [Lavoué 2011] • Based on the 2D image Structural SIMilarity (SSIM) Index [Wang et al. 2004] o L: curvature comparison (mean curvature) o C: contrast comparison (curvature standard deviation) o S: structure comparison (curvature covariance) (a and b : local windows on meshes A and B) • Multiscale • Connectivity independent gipsa-lab 7 Perceptual quality metrics DAME: Dihedral Angle Mesh Error [Vasa 2012] Distorted mesh Original mesh STED: Spatio-temporal edge difference (for dynamic meshes): [Vasa 2011] Spatial error gipsa-lab 8 Temporal error Perceptual quality metrics FMPD: A fast roughness-based mesh visual quality distance (Reduced-reference) [Wang et al. 2012] : Global roughness: the sum of local roughness computed on each vertex. TPDM: Tensor perceptual distance measure: [Torkhani et al. 2012] , si : local surface area Local tensor perceptual distance measure: : local roughness (1-ring neighborhood) , std. deviation of the projected Min./Max. curvature directions : ratio of the Laplacian of mean curvature in the 1-ring neighborhood and the mean curvature on current vertex gipsa-lab 9 Existing subjective databases for static meshes The general-purpose database [LIRIS/EPFL] Armadillo 40002 vertices Dinosaur 42146 vertices RockerArm 40177 vertices Venus 49666 vertices Distorted meshes = 88 The masking database [LIRIS] Bimba 8857 vertices Armadillo 40002 vertices Dinosaur 20228 vertices LionVase 38728 vertices Distorted meshes = 26 gipsa-lab 10 Existing subjective databases for static meshes The simplification database [IEETA] Bones 2154 vertices Bunny 25103 vertices Head 11703 vertices Lung 4811 vertices Strange 9988 vertices Distorted meshes = 30 The compression database [UWB] James 40218 vertices Bunny 35961 vertices Jessi 70291 vertices Nissan 16947 vertices helix 30534 vertices Distorted meshes = 68 gipsa-lab 11 Existing subjective database for dynamic meshes The UWB dynamic meshes database [UWB] Chicken 3030 vertices 400 frames Mocap-Dance 14409 vertices 263 frames Dance 7061 vertices 201 frames Jump 15830 vertices 222 frames Cloth 9987 vertices 200 frames Distorted meshes = 45 meshes Dynamic meshes were evaluated separately in 5 experiments Low distorted meshes number by distortion (for some distortions, only 2 impaired meshes were derived) Low distortions number for each dynamic mesh (9 distortions) gipsa-lab 12 Subjectively-rated Dynamic Mesh Quality Database Assessment method Single-Stimulus with hidden reference presentation (as described in ITU-R Rec. BT-500) : difference score of the distorted sequence i assigned by observer j in session k Assessment software gipsa-lab 13 Subjectively-rated Dynamic Mesh Quality Database Experiment settings Participants: Each distorted animation was evaluated by 25 naïve observers Subjective scores: scores range: [0 , 10] , with 5 labels {Bad, Poor, Fair, Good, Excellent} Users-interactions: zoom/rotation/translation Rendering : Flat-shading gipsa-lab 14 Gouraud Smooth-shading (selected rendering) Subjectively-rated Dynamic Mesh Quality Database Test materials Horse Chicken 8431 vertices 47 frames 3030 vertices 321 frames chinchilla 43607 vertices 83 frames Elephant Dress 42321 vertices 48 frames 41057 vertices 81 frames Human Cloth-ball Balls Dinosaur 18890 vertices 161 frames 46598 vertices 68 frames 73960 vertices 40 frames Armadillo 20218 vertices 151 frames 40002 vertices 74 frames gipsa-lab 15 Subjectively-rated Dynamic Mesh Quality Database Test materials: distortions Global distortion Spatial mask1 Uniform Gaussian Descriptor-weighted distortion Spatial mask2 Temporal mask1 Temporal mask2 In rough In smooth In rough In smooth Horse 3 3 Chicken 3 3 Chinchilla 3 3 Elephant 3 3 Human 3 3 ClothBall 3 3 Balls 16k 3 3 Blue Dress 3 3 Armadillo dynamic 3 3 3 3 3 3 Dinosaur dynamic 3 3 3 3 3 3 3 3 3 In slow In fast 3 3 3 3 3 3 3 3 3 16 3 3 3 3 •Additive Uniform noise •Additive Gaussian noise gipsa-lab 3 In fast compression Network FAMC error Coddyac In slow LD DCT 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Subjectively-rated Dynamic Mesh Quality Database Test materials: distortions Global distortion Spatial mask1 Uniform Gaussian Descriptor-weighted distortion Spatial mask2 Temporal mask1 Temporal mask2 In rough In smooth In rough In smooth Horse 3 3 Chicken 3 3 Chinchilla 3 3 Elephant 3 3 Human 3 3 ClothBall 3 3 Balls 16k 3 3 Blue Dress 3 3 Armadillo dynamic 3 3 3 3 3 3 Dinosaur dynamic 3 3 3 3 3 3 3 3 3 3 In fast In slow In fast 3 3 3 3 3 3 3 3 3 compression Network FAMC error Coddyac In slow LD DCT 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 • Spatial masking simulation • Spatial masking 1: a random scalar generated for each vertex for all frames • Spatial masking 2: a random scalar generated for each frame for all vertices • Noise is weighted by a roughness/smoothness descriptor gipsa-lab 17 Subjectively-rated Dynamic Mesh Quality Database Test materials: distortions Global distortion Spatial mask1 Uniform Gaussian Descriptor-weighted distortion Spatial mask2 Temporal mask1 Temporal mask2 In rough In smooth In rough In smooth Horse 3 3 Chicken 3 3 Chinchilla 3 3 Elephant 3 3 Human 3 3 ClothBall 3 3 Balls 16k 3 3 Blue Dress 3 3 Armadillo dynamic 3 3 3 3 3 3 Dinosaur dynamic 3 3 3 3 3 3 3 3 3 3 In fast In slow In fast 3 3 3 3 3 3 3 3 3 compression Network FAMC error Coddyac In slow LD DCT 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 • Temporal masking simulation • Temporal masking 1: a random scalar generated for each vertex for all frames • Temporal masking 2: a random scalar generated for each frame for all vertices • Noise is weighted and inversely weighted by a per-vertex relative Speed descriptor gipsa-lab 18 Subjectively-rated Dynamic Mesh Quality Database Test materials: distortions • Global (Uniform/Gaussian) distortions with (The same for y and z ) • Descriptor-weighted distortions (spatial and temporal masking) (Spatial/temporal mask1) (Spatial/temporal mask2) gipsa-lab 19 Subjectively-rated Dynamic Mesh Quality Database Test materials: distortions • Local roughness descriptor : The Laplacian of Gaussian curvature oGC: Gaussian curvature approximation : oD: Cotg-based Laplacian matrix: • Local velocity descriptor: The relative difference between vertices positions in a temporal window of 3 frames. gipsa-lab 20 Subjectively-rated Dynamic Mesh Quality Database Test materials: distortions Global distortion Spatial mask1 Uniform Gaussian Descriptor-weighted distortion Spatial mask2 Temporal mask1 Temporal mask2 In rough In smooth In rough In smooth Horse 3 3 Chicken 3 3 Chinchilla 3 3 Elephant 3 3 Human 3 3 ClothBall 3 3 Balls 16k 3 3 Blue Dress 3 3 Armadillo dynamic 3 3 3 3 3 3 Dinosaur dynamic 3 3 3 3 3 3 3 3 3 3 In fast In slow In fast 3 3 3 3 3 3 3 3 3 compression Network FAMC error Coddyac In slow LD DCT 3 3 3 3 3 3 22 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 • 3 lossy compressor schemes • Simulation of transmission errors over unreliable wired IP network gipsa-lab 3 Subjectively-rated Dynamic Mesh Quality Database Test materials: distortions Global distortion Spatial mask1 Uniform Gaussian Descriptor-weighted distortion Spatial mask2 Temporal mask1 Temporal mask2 In rough In smooth In rough In smooth Horse 3 3 Chicken 3 3 Chinchilla 3 3 Elephant 3 3 Human 3 3 ClothBall 3 3 Balls 16k 3 3 Blue Dress 3 3 Armadillo dynamic 3 3 3 3 3 3 Dinosaur dynamic 3 3 3 3 3 3 3 3 3 3 In fast In slow In fast 3 3 3 3 3 3 3 3 3 3 23 3 3 3 3 3 3 3 = distortion levels (low-medium-high quality) for each animation Total = (10 reference + 276 distorted ) mesh to evaluate subjectively gipsa-lab compression Network FAMC error Coddyac In slow LD DCT 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 Subjectively-rated Dynamic Mesh Quality Database Difference Mean Opinion Scores (DMOS) results with 95% CI gipsa-lab 24 Subjectively-rated Dynamic Mesh Quality Database Difference Mean Opinion Scores (DMOS) results with 95% CI gipsa-lab 25 Subjectively-rated Dynamic Mesh Quality Database Difference Mean Opinion Scores (DMOS) results with 95% CI gipsa-lab 26 Subjectively-rated Dynamic Mesh Quality Database Difference Mean Opinion Scores (DMOS) results Spatial Roughness cannot hide trembling Rapid motion can hide spatial noise gipsa-lab 27 Perceptual quality metrics performances Spearman (rank-order) correlation Metric Uniform Gaussian Spatial1 Spatial2 Temporal Temporal Network Coddyac 1 2 FAMC Overall Mean KG 32,24% 27,55% 27,96% 65,19% 45,59% -0,52% 58,93% 40,67% 51,99% 11,54% 38,85% STED 45,46% 47,25% 67,10% 85,98% 68,57% 12,53% 62,22% 44,37% 65,52% 57,66% 55,44% DAME 19,04% 23,17% 33,05% 44,01% 32,67% -16,94% 33,15% 0,31% 24,40% 23,07% 21,43% MSDM2 66,48% 52,17% 72,19% 80,41% 40,98% -3,61% 79,43% 57,40% 66,59% 59,58% 56,89% FMPD 63,59% 57,29% 67,67% 61,58% 54,00% 25,32% 68,08% 71,25% 63,60% 62,81% 59,15% TPDM 59,67% 55,06% 48,23% 58,32% 56,56% 13,75% 69,12% 65,64% 66,78% 55,61% 54,79% gipsa-lab 28 Perceptual quality metrics performances Spearman correlation for image-based metrics using default parameters: Metric Uniform Gaussian Spatial Spatial Temporal Temporal Network Coddyac FAMC Overall 1 2 1 2 Mean PSNR 17,74% 22,07% 8,94% -27,66% 32,89% -7,90% 13,09% -14,42% 13,35% 6,04% MSSSIM 19,19% 26,30% 15,77% 12,44% 30,50% 9,16% 14,32% -14,60% 10,51% 19,78% 13,73% VIF 19,88% 21,26% 9,11% -25,66% 35,50% -5,33% 13,72% -7,21% 12,84% 7,86% NIQE -5,87% -8,92% -31,88% -28,48% -3,31% 17,44% 13,56% 0,49% -10,62% -11,13% -6,40% NIQE2 4,72% -0,07% -14,31% -12,52% 3,92% 23,66% 23,49% 9,92% -8,97% -5,72% 3,31% VQM -19,97% -19,24% -3,37% -18,01% 9,16% -10,44% 10,42% -10,60% -15,41% -6,38% gipsa-lab 29 4,61% 9,64% 9,50% Towards a perceptual quality metric for dynamic meshes 1. Spatial perceptual distance For each vertex and its corresponding vertice on the distorted mesh • Local perceptual distance: Local roughness at Local roughness at = 0.002 (stability coef.) • Per-frame perceptual distance: = 3 (Minkowski power param.) • Spatial-based perceptual distance for dynamic meshes and = 4 (Minkowski power param.) Metric Uniform Gaussian SM1 SPD 61,32 66,21 88,02 gipsa-lab 30 SM2 82,19 TM1 52,47 TM2 4,57 FAMC CODDYAC 64,74 72,42 Network 64,96 Overall 64,31 Towards a perceptual quality metric for dynamic meshes 2. Speed-weighted spatial-based perceptual distance • We compute the mean speed ( ) of reference mesh vertices in a 5 frames window • Speed-based weighting for the spatial distance: • Per-frame spatio-temporal distance. • Spatio-temporal perceptual distance: Metric Uniform Gaussian SM1 SPD 61,32 66,21 88,02 SWSPD 73,25 79,88 90,63 gipsa-lab 31 SM2 82,19 82,41 TM1 52,47 57,91 TM2 4,57 2 FAMC CODDYAC 64,74 72,42 69,23 87,48 Network 64,96 75,91 Overall 64,31 73,47 Towards a perceptual quality metric for dynamic meshes 3. Temporal perceptual distance • Per-vertex (vector-norm-related) motion difference: motion vector norm at motion vector norm at = 0.01 (stability coef.) • Per-vertex (vector-direction-related) motion difference: motion vector angle at motion vector angle at (stability coef.) • Temporal vector-norm-related and vector-direction-related distances: Spatial and temporal Minkowski sum of gipsa-lab 32 and Towards a perceptual quality metric for dynamic meshes 4. Final perceptual distance measure with: Spearman correlation: Metric Uniform Gaussian SM1 SPD 61,32 66,21 88,02 SWSPD 73,25 79,88 90,63 DMPD 84,61 82,51 91,5 gipsa-lab 33 SM2 82,19 82,41 97,8 TM1 52,47 57,91 59,21 TM2 4,57 2 88,91 FAMC CODDYAC 64,74 72,42 69,23 87,48 70,11 89 Network 64,96 75,91 82,72 Overall 64,31 73,47 80,03 Conclusion and Future work • Geometric metrics (RMS, Hd, KG, etc.) fail to predict the perceptual quality of 3D meshes • We present a new general-purpose, subjectively-rated dynamic meshes database • There is no perceptual metric able to predict dynamic meshes quality after temporal distortions •The new perceptual metric integrates both spatial and temporal measures to evaluate the perceptual quality of dynamic meshes Future work: A Machine-learning-based metric, reduced-reference metric for dynamic meshes Textured meshes Improve the database by adding new distortions gipsa-lab 34 Thank you for your attention gipsa-lab 35
© Copyright 2025 ExpyDoc