ႝΚ‫س‬಍!
Power Systems
Chapter 2
Basic Principles
ഋ଻উ!
ߏ۪εᏢႝᐒ‫!س‬
©Woei-Luen Chen
Basic Principles
Ch2 - 1
Pvumjof!
z
z
z
z
z
3/2!Qibtps!Sfqsftfoubujpo!
3/3!Dpnqmfy!Qpxfs!Tvqqmjfe!up!b!Pof.Qpsu!
3/4!Dpotfswbujpo!pg!Dpnqmfy!Qpxfs!
3/5!Cbmbodfe!Uisff.Qibtf!
3/6!Qfs!Qibtf!Bobmztjt!
!
©Woei-Luen Chen
Basic Principles
Ch2 - 2
3/2!Qibtps!Sfqsftfoubujpo! … Steady-state Calculation
peak value:Ⲙῤ
angular frequency:奺柣䌯
Instantaneous
voltage
phase:䚠ỵ
Im
I
V
Re
Effective phasor:
|V |
Vmax
2
Rectangular form:
©Woei-Luen Chen
Z 2S f
2S u 60Hz 377rad / sec
T
1 / 60Hz 16.67ms
1/ f
Basic Principles
Ch2 - 3
3/3!Dpnqmfy!Qpxfs!Tvqqmjfe!up!b!Pof.Qpsu!
Instantaneous power:
Average power:
Power Factor:
©Woei-Luen Chen
90 o d I d 90 o
Basic Principles
Ch2 - 4
Mbhhjoh!'!Mfbejoh!QG!
Im
i(t)
v(t)
V
I lags V
Lagging
PF
I
2|I |
Zt
Re
2 |V |
I
I
Im
i(t)
I
I leads V
Leading
PF
I
v(t)
Zt
Re
V
©Woei-Luen Chen
I
Basic Principles
Ch2 - 5
Opsnbmj{f!dvssfou!ejsfdujpo!cbtfe!po!uif!mjnjubujpo;! 90o d I d 90 o
ख़ཥ‫ۓ‬ကႝࢬБӛ
Ex2:
Ex1:
Im
Im
Im
I
I
I
Re
Re
V
I
V
V
I
©Woei-Luen Chen
Basic Principles
Re
Ch2 - 6
Joevdujwf-!Dbqbdjujwf!boe!Sftjtujwf!djsdvjut!
CASE-I: PF<1 lagging (N is Inductive)
p(t)
p
(t))
v(t)
Zt
p t v t u i t i(t)
CASE-III: PF=1 (N is Resistive)
CASE-II: PF<1 leading (N is Capacitive)
p(t)
(t))
p(t)
(t))
v(t)
v(t)
Zt
Zt
i(t)
i(t)
©Woei-Luen Chen
Basic Principles
Ch2 - 7
Bd!dvssfou!efdpnqptjujpo!
ian (t) =
iR (t) +
Out of phase,
reactive power
component
p
In phase,
Real power
component
p
Ian2
=
IR2
iX (t)
+
I
IX2
iR
I
©Woei-Luen Chen
iX
Basic Principles
Ch2 - 8
Bd!dvssfou!efdpnqptjujpo;!bdujwf!qpxfs!boe!sfbdujwf!qpxfs!
Instantaneous power:
1
2
Vmax I max ª¬cos TV T I cos 2Zt 2TV TV T I º¼
1
2
Vmax I max ª¬cos I cos 2 Zt TV cos I sin 2 Zt TV sin I º¼
1
2
Vmax I max cos I ª¬1 cos 2 Zt TV º¼ ª¬ sin I sin 2 Zt TV º¼
^
`
90o d I d 90 o
|V || I | cos I ª¬1 cos 2 Zt TV º¼ |V || I | ª¬ sin I sin 2 Zt TV º¼
P ª¬1 cos 2 Zt TV º¼ Q sin 2 Zt TV Active power (Real power, average power):
P |V || I | cos I
Reactive power:
Q |V || I | sin I
©Woei-Luen Chen
Basic Principles
Ch2 - 9
Qptjujwf!0!Ofhbujwf!;!bdujwf!qpxfs!boe!sfbdujwf!qpxfs!
Active power (Real power, average power):
P |V || I | cos I
Reactive power:
Q |V || I | sin I
Ex1:
Q
90o d I d 90 o
Im
P
Ex2:
I
I
Q
Im
V
P
I
Re
V
I
I 0
I !0
P>0: N is a load
Q<0: N is Capacitive,
leading power factor
P>0: N is a load
Q>0: N is Inductive,
lagging power factor
©Woei-Luen Chen
Basic Principles
Re
Ch2 - 10
Qptjujwf!0!Ofhbujwf!;!bdujwf!qpxfs!boe!sfbdujwf!qpxfs!
Im
Ex3:
S
Re
V
I
Im
Q
P
I
I
S
Re
V
I 0
N is a power source
N is Inductive,
lagging power factor
P>0: S is a load
Q<0: S is Capacitive,
leading power factor
©Woei-Luen Chen
Basic Principles
Ch2 - 11
Dpnqmfy!Qpxfs;!T!>!Q!,!kR!
Active power (Real power, average power):
P |V || I | cos I
S VI *
|V | ‘TV ˜ | I | ‘ T I
jQ
II
|V || I | ‘ TV T I I
P
Reactive power:
Q |V || I | sin I
III
Complex power:
IV
|V || I | ‘I
|V || I | cos I j |V || I | sin I
P jQ
ҷӼ
ґ
Ю
©Woei-Luen Chen
Basic Principles
Ch2 - 12
Dpnqmfy!Qpxfs!efsjwfe!gspn!W-!J-![!
I
Complex power:
+
V
-
S VI *
1. Complex power represented by I, Z:
S VI *
ZII *
Z ˜I
V
Z
2. Complex power represented by V, Z:
S VI *
I
| I |2 Z
| I |2 R jX §V ·
¨ ¸
©Z¹
| I |2 R j | I |2 X
P jQ
©Woei-Luen Chen
*
§V ·
V¨ ¸
©Z¹
|V |2
Z*
P jQ
Basic Principles
Ch2 - 13
)᏾౛*!
Im
CASE-I: Zth=Rth為jXth
PF<1 ↔ lagging PF
↔ N is Inductive
↔ P>0 , Q>0
V
I !0
I
Im
Q
P
Zth
©Woei-Luen Chen
I
CASE-II: Ztth=Rth炼jXth
PF<1
PF<
<1 ↔ le
<1
leading
ea
ad
PF
↔ N is Capacitive
↔ P>0 , Q<0
CASE-III: Zth=Rth
PF=1 ↔ unity PF
↔ N is Resistive
↔ P>0 , Q=0
Basic Principles
Re
R
I 0
Re
V
Im
I 0
V
Re
I
Ch2 - 14
)ፐҁጄ‫ٯ‬3/2*!
…average power =0
©Woei-Luen Chen
Basic Principles
Ch2 - 15
Basic Principles
Ch2 - 16
)ፐҁጄ‫ٯ‬3/3*!
2
©Woei-Luen Chen
)ፐҁጄ‫ٯ‬3/4*!
4kVA
12kW
6.667kVArr pf=0.96
leading
©Woei-Luen Chen
15kW
pf=1.0
Basic Principles
Ch2 - 17
3/4!Dpotfswbujpo!pg!Dpnqmfy!Qpxfs!
z
Theorem of conservation of complex power
For a network supplied by independent sources all at the same
frequency, the sum of the complex power supplied by the independent
sources equals the sum of the complex power received by all the other
branches of the network.
Applying the theorem to N2,
we get
= complex power absorbed by
N2
©Woei-Luen Chen
Basic Principles
Ch2 - 18
)ፐҁጄ‫ٯ‬3/5*!
©Woei-Luen Chen
Basic Principles
Ch2 - 19
Basic Principles
Ch2 - 20
)ፐҁጄ‫ٯ‬3/6*!
©Woei-Luen Chen
)ፐҁጄ‫ٯ‬3/7*!
)
©Woei-Luen Chen
Basic Principles
Ch2 - 21
Basic Principles
Ch2 - 22
)ፐҁጄ‫ٯ‬3/9*!
©Woei-Luen Chen
3/5!Cbmbodfe!Uisff.Qibtf!
ύ‫܄‬ᗺ
Neutral point : common point for Y-connected circuits
Y-connected source
Δ-connected load
Y-connected load
Δ-connected source
©Woei-Luen Chen
Basic Principles
Ch2 - 23
Ufsnjopmphjft!
z
Balanced three-phase (3I) systems:ѳᑽΟ࣬‫س‬಍
•
•
z
z
z
z
z
Balanced three-phase sources: three source voltages differ only in their
angles with 120o angle differences between any pair.
Balanced three-phase loads / lines
3I3W:Ο࣬Οጕ
3I4W = 3I3W + 1W (neutral wire)ǺΟ࣬Ѥጕ
Line voltage/ line-line voltage (ጕႝᓸ): Eab, Vab, Va'b'
Phase voltage/ line-neutral voltage(࣬ႝᓸ): Ean, Van, Va'n
Positive-sequence source (abc):
•Negative sequence source (acb):
҅࣬‫ׇ‬
ॄ࣬‫ׇ‬
Vc |V | ‘120 or Vc |V | ‘ 240
o
o
CW
Vb |V | ‘120o
CCW
Va |V | ‘0 o
Vc |V | ‘ 120o
Vb |V | ‘ 120o
©Woei-Luen Chen
Va |V | ‘0 o
Basic Principles
Ch2 - 24
Fy;ԵቾΠკϐ҅‫)ׇ‬b.c.d*Ο࣬‫׎ݢ‬炻Ֆ‫ࣁޣ‬B࣬ǵC࣬ǵD࣬ǻ!
120 o
120 o
©Woei-Luen Chen
Basic Principles
Ch2 - 25
Qspqfsuz!22;!bmm!uif!ofvusbm!qpjout!bsf!bu!uif!tbnf!wpmubhf!
Proof:
+)
1) let E1 | E | ‘0o ,
E2 | E | ‘ 120o ,
2) let E1 | E | ‘ 240o , E2 | E | ‘0o ,
E3 | E | ‘ 240o Ÿ Vnn'
Vo
E3 | E | ‘ 120o Ÿ Vnn'
Vo
3) let E1 | E | ‘ 120o , E2 | E | ‘ 240o ,
E3 | E | ‘0 o
Ÿ Vnn'
Vo
E3
Ÿ Vnn'
3Vo
Thm. of
superposition
©Woei-Luen Chen
E1
0,
E1
0
0, E2
E2
0, E3
0,
0, Ÿ Vnn'
0,
0
Basic Principles
Ch2 - 26
Qspqfsuz!22;!bmm!uif!ofvusbm!qpjout!bsf!bu!uif!tbnf!wpmubhf!
Per phase analysis (ch2.5)
©Woei-Luen Chen
Basic Principles
Ch2 - 27
Qspqfsuz!33;!Efmub.Xzf!Mpbe!Usbotgpsnbujpo!
Proof:
KCL
©Woei-Luen Chen
Basic Principles
Ch2 - 28
Qspqfsuz!4
4;!Efmub.Xzf!Tpvsdf!Usbotgpsnbujpo!
!!!!!!!!!!!ps!)mjof!wpmubhf!up!qibtf!wpmubhf!usbotgpsnbujpo*!!
Eab
3Ean e
Ebc
3Ebn e
Eca
3Ecn e
j
S
6
j
S
6
j
S
6
Proof:
Ecn |V | ‘120 o
Ecn |V | ‘120 o
Ebn
Ean Ebn
Eab
3 |V | ‘30 o
Ean |V | ‘0 o
Ebn |V | ‘ 120o
Ean |V | ‘0 o
Ebn |V | ‘ 120o
©Woei-Luen Chen
Basic Principles
Ch2 - 29
Qspqfsuz!55;!mjof!dvssfou!up!qibtf!dvssfou!usbotgpsnbujpo!
a
b
Ia line current
Ib
Ia
Iab
Ib
Ibc
c
Ica
Ic
Ic
3I ab e
3I bc e
3I ca e
j
S
6
j
S
6
j
S
6
phase current
Proof:
I ca | I | ‘120 o
I ca | I | ‘120 o
I ab | I | ‘0 o
I ab | I | ‘0 o
Ibc | I | ‘ 120o
©Woei-Luen Chen
Ibc | I | ‘ 120o
Basic Principles
I ca
Ia
I ab I ca
3 | I | ‘ 30 o
Ch2 - 30
Qspqfsuz!6
6;!dpotubou!jotuboubofpvt!bdujwf!qpxfs!usbotgfs!
!!!!!!!!!!!{fsp!jotuboubofpvt!sfbdujwf!qpxfs!usbotgfs!
Instantaneous power
Power
System
instantaneous 3I active power ɨconst
instantaneous 3I reactive power ɨ0
©Woei-Luen Chen
Basic Principles
Ch2 - 31
Qspqfsuz!7
7;!Dpnqmfy!bdujwf!qpxfs!>!jotuboubofpvt!bdujwf!qpxfs!
!!!!!!!!!!!Dpnqmfy!sfbdujwf!qpxfs!ɫ!jotuboubofpvt!sfbdujwf!qpxfs!
Complex power
S3I
3 |V || I | cos I j3 |V || I | sin I
3P j3Q
Power
System
P3I jQ3I
If I ≠ 0 → Q3I ≠ 0
©Woei-Luen Chen
Basic Principles
Ch2 - 32
Qspqfsuz!88;த‫ޑـ‬ፄф౗߄ҢԄ!
2/!а࣬ႝᓸϷ࣬ႝࢬ߄Ң!
| S3I | 3|Vp || I p |, P3I
3|Vp || I p | cos I , Q3I
3|Vp || I p | sin I
3/!аጕႝᓸϷጕႝࢬ߄Ң!
| S3I |
3 |VL || I L |, P3I
3 |VL || I L | cos I , Q3I
3 |VL || I L | sin I
| I p | | IL |
| Ip |
|V p |
| IL |
3
|VL |
3
Power
System
|Vp | |VL |
Power
System
vca
vab
vbc
©Woei-Luen Chen
Basic Principles
Ch2 - 33
3/6!Qfs!Qibtf!Bobmztjt!
z
Assumptions:
1. balanced 3I!system
2. all loads and sources wye connected
3. no mutual inductances between phases (ch3)
then,
(a) all the neutral are at the same potential
(b) the phases are completely decoupled
(c) the same phase sequence of network variables and sources
©Woei-Luen Chen
Basic Principles
Ch2 - 34
)ፐҁጄ‫ٯ‬3/23*!
I2
rms
peak
©Woei-Luen
en Ch
Chen
hen
Basic Principles
Ch2 - 35
)ፐҁጄ‫ٯ‬3/24*! Find Vab
2600V
Mpbe.4!
Mpbe.3!
a
a’
I1
Power
Source
b
c
Mpbe.2!
156kW
117kVAr
n
b’
c’
=Dpotjefs!Mpbe.2?! a’
S1I
I1
n
I1
b’
c’
©Woei-Luen Chen
115kVA
PF=0.6
leading
Basic Principles
156 j117
3
S1*I
Va'* n
Ch2 - 36
2600V
Mpbe.4!
Mpbe.3!
a
a’
Mpbe.2!
156kW
117kVAr
Power
Source
n
b’
b
115kVA
PF=0.6
leading
c’
c
=Dpotjefs!Mpbe.3?!
a’
I2
n
b’
c’
©Woei-Luen Chen
Basic Principles
Ch2 - 37
2600V
2
Mpbe.3!
a
a’
Mpbe.2!
156kW
117kVAr
Power
Source
n
b’
b
Mpbe.4!
115kVA
PF=0.6
leading
c’
c
=Dpotjefs!Mpbe.4?!
a’
I3
n
+
+
b’
c’
©Woei-Luen Chen
Basic Principles
Ch2 - 38
2600V
Mpbe.4!
Mpbe.3!
a
a’
156kW
117kVAr
Power
Source
b
c
Mpbe.2!
n
b’
115kVA
PF=0.6
leading
c’
=Dpotjefs!tpvsdf!jnqfebodf?
78.766 j11.355
2600‘0 o 78.766 j11.355 0.6 j3.0 2624.47 ‘5.315o
3 u 2624.47
©Woei-Luen Chen
4545.71 V
Basic Principles
Ch2 - 39
Bewboubhft!pg!uisff.qibtf!tztufnt!
z
z
Less material (conductors, iron)
Constant active power transfer → constant speed and torque
(single-phase systems: pulsating active power transfer)
©Woei-Luen Chen
Basic Principles
Ch2 - 40
$Ipnfxpsl.2!
©Woei-Luen Chen
Basic Principles
Ch2 - 41