ႝΚس! Power Systems Chapter 2 Basic Principles ഋউ! ߏ۪εᏢႝᐒ!س ©Woei-Luen Chen Basic Principles Ch2 - 1 Pvumjof! z z z z z 3/2!Qibtps!Sfqsftfoubujpo! 3/3!Dpnqmfy!Qpxfs!Tvqqmjfe!up!b!Pof.Qpsu! 3/4!Dpotfswbujpo!pg!Dpnqmfy!Qpxfs! 3/5!Cbmbodfe!Uisff.Qibtf! 3/6!Qfs!Qibtf!Bobmztjt! ! ©Woei-Luen Chen Basic Principles Ch2 - 2 3/2!Qibtps!Sfqsftfoubujpo! … Steady-state Calculation peak value:Ⲙῤ angular frequency:奺柣䌯 Instantaneous voltage phase:䚠ỵ Im I V Re Effective phasor: |V | Vmax 2 Rectangular form: ©Woei-Luen Chen Z 2S f 2S u 60Hz 377rad / sec T 1 / 60Hz 16.67ms 1/ f Basic Principles Ch2 - 3 3/3!Dpnqmfy!Qpxfs!Tvqqmjfe!up!b!Pof.Qpsu! Instantaneous power: Average power: Power Factor: ©Woei-Luen Chen 90 o d I d 90 o Basic Principles Ch2 - 4 Mbhhjoh!'!Mfbejoh!QG! Im i(t) v(t) V I lags V Lagging PF I 2|I | Zt Re 2 |V | I I Im i(t) I I leads V Leading PF I v(t) Zt Re V ©Woei-Luen Chen I Basic Principles Ch2 - 5 Opsnbmj{f!dvssfou!ejsfdujpo!cbtfe!po!uif!mjnjubujpo;! 90o d I d 90 o ख़ཥۓကႝࢬБӛ Ex2: Ex1: Im Im Im I I I Re Re V I V V I ©Woei-Luen Chen Basic Principles Re Ch2 - 6 Joevdujwf-!Dbqbdjujwf!boe!Sftjtujwf!djsdvjut! CASE-I: PF<1 lagging (N is Inductive) p(t) p (t)) v(t) Zt p t v t u i t i(t) CASE-III: PF=1 (N is Resistive) CASE-II: PF<1 leading (N is Capacitive) p(t) (t)) p(t) (t)) v(t) v(t) Zt Zt i(t) i(t) ©Woei-Luen Chen Basic Principles Ch2 - 7 Bd!dvssfou!efdpnqptjujpo! ian (t) = iR (t) + Out of phase, reactive power component p In phase, Real power component p Ian2 = IR2 iX (t) + I IX2 iR I ©Woei-Luen Chen iX Basic Principles Ch2 - 8 Bd!dvssfou!efdpnqptjujpo;!bdujwf!qpxfs!boe!sfbdujwf!qpxfs! Instantaneous power: 1 2 Vmax I max ª¬cos TV T I cos 2Zt 2TV TV T I º¼ 1 2 Vmax I max ª¬cos I cos 2 Zt TV cos I sin 2 Zt TV sin I º¼ 1 2 Vmax I max cos I ª¬1 cos 2 Zt TV º¼ ª¬ sin I sin 2 Zt TV º¼ ^ ` 90o d I d 90 o |V || I | cos I ª¬1 cos 2 Zt TV º¼ |V || I | ª¬ sin I sin 2 Zt TV º¼ P ª¬1 cos 2 Zt TV º¼ Q sin 2 Zt TV Active power (Real power, average power): P |V || I | cos I Reactive power: Q |V || I | sin I ©Woei-Luen Chen Basic Principles Ch2 - 9 Qptjujwf!0!Ofhbujwf!;!bdujwf!qpxfs!boe!sfbdujwf!qpxfs! Active power (Real power, average power): P |V || I | cos I Reactive power: Q |V || I | sin I Ex1: Q 90o d I d 90 o Im P Ex2: I I Q Im V P I Re V I I 0 I !0 P>0: N is a load Q<0: N is Capacitive, leading power factor P>0: N is a load Q>0: N is Inductive, lagging power factor ©Woei-Luen Chen Basic Principles Re Ch2 - 10 Qptjujwf!0!Ofhbujwf!;!bdujwf!qpxfs!boe!sfbdujwf!qpxfs! Im Ex3: S Re V I Im Q P I I S Re V I 0 N is a power source N is Inductive, lagging power factor P>0: S is a load Q<0: S is Capacitive, leading power factor ©Woei-Luen Chen Basic Principles Ch2 - 11 Dpnqmfy!Qpxfs;!T!>!Q!,!kR! Active power (Real power, average power): P |V || I | cos I S VI * |V | TV | I | T I jQ II |V || I | TV T I I P Reactive power: Q |V || I | sin I III Complex power: IV |V || I | I |V || I | cos I j |V || I | sin I P jQ ҷӼ ґ Ю ©Woei-Luen Chen Basic Principles Ch2 - 12 Dpnqmfy!Qpxfs!efsjwfe!gspn!W-!J-![! I Complex power: + V - S VI * 1. Complex power represented by I, Z: S VI * ZII * Z I V Z 2. Complex power represented by V, Z: S VI * I | I |2 Z | I |2 R jX §V · ¨ ¸ ©Z¹ | I |2 R j | I |2 X P jQ ©Woei-Luen Chen * §V · V¨ ¸ ©Z¹ |V |2 Z* P jQ Basic Principles Ch2 - 13 )*! Im CASE-I: Zth=Rth為jXth PF<1 ↔ lagging PF ↔ N is Inductive ↔ P>0 , Q>0 V I !0 I Im Q P Zth ©Woei-Luen Chen I CASE-II: Ztth=Rth炼jXth PF<1 PF< <1 ↔ le <1 leading ea ad PF ↔ N is Capacitive ↔ P>0 , Q<0 CASE-III: Zth=Rth PF=1 ↔ unity PF ↔ N is Resistive ↔ P>0 , Q=0 Basic Principles Re R I 0 Re V Im I 0 V Re I Ch2 - 14 )ፐҁጄٯ3/2*! …average power =0 ©Woei-Luen Chen Basic Principles Ch2 - 15 Basic Principles Ch2 - 16 )ፐҁጄٯ3/3*! 2 ©Woei-Luen Chen )ፐҁጄٯ3/4*! 4kVA 12kW 6.667kVArr pf=0.96 leading ©Woei-Luen Chen 15kW pf=1.0 Basic Principles Ch2 - 17 3/4!Dpotfswbujpo!pg!Dpnqmfy!Qpxfs! z Theorem of conservation of complex power For a network supplied by independent sources all at the same frequency, the sum of the complex power supplied by the independent sources equals the sum of the complex power received by all the other branches of the network. Applying the theorem to N2, we get = complex power absorbed by N2 ©Woei-Luen Chen Basic Principles Ch2 - 18 )ፐҁጄٯ3/5*! ©Woei-Luen Chen Basic Principles Ch2 - 19 Basic Principles Ch2 - 20 )ፐҁጄٯ3/6*! ©Woei-Luen Chen )ፐҁጄٯ3/7*! ) ©Woei-Luen Chen Basic Principles Ch2 - 21 Basic Principles Ch2 - 22 )ፐҁጄٯ3/9*! ©Woei-Luen Chen 3/5!Cbmbodfe!Uisff.Qibtf! ύ܄ᗺ Neutral point : common point for Y-connected circuits Y-connected source Δ-connected load Y-connected load Δ-connected source ©Woei-Luen Chen Basic Principles Ch2 - 23 Ufsnjopmphjft! z Balanced three-phase (3I) systems:ѳᑽΟ࣬س • • z z z z z Balanced three-phase sources: three source voltages differ only in their angles with 120o angle differences between any pair. Balanced three-phase loads / lines 3I3W:Ο࣬Οጕ 3I4W = 3I3W + 1W (neutral wire)ǺΟ࣬Ѥጕ Line voltage/ line-line voltage (ጕႝᓸ): Eab, Vab, Va'b' Phase voltage/ line-neutral voltage(࣬ႝᓸ): Ean, Van, Va'n Positive-sequence source (abc): •Negative sequence source (acb): ׇ҅࣬ ॄׇ࣬ Vc |V | 120 or Vc |V | 240 o o CW Vb |V | 120o CCW Va |V | 0 o Vc |V | 120o Vb |V | 120o ©Woei-Luen Chen Va |V | 0 o Basic Principles Ch2 - 24 Fy;ԵቾΠკϐ҅)ׇb.c.d*Ο࣬ݢ炻ՖࣁޣB࣬ǵC࣬ǵD࣬ǻ! 120 o 120 o ©Woei-Luen Chen Basic Principles Ch2 - 25 Qspqfsuz!22;!bmm!uif!ofvusbm!qpjout!bsf!bu!uif!tbnf!wpmubhf! Proof: +) 1) let E1 | E | 0o , E2 | E | 120o , 2) let E1 | E | 240o , E2 | E | 0o , E3 | E | 240o Vnn' Vo E3 | E | 120o Vnn' Vo 3) let E1 | E | 120o , E2 | E | 240o , E3 | E | 0 o Vnn' Vo E3 Vnn' 3Vo Thm. of superposition ©Woei-Luen Chen E1 0, E1 0 0, E2 E2 0, E3 0, 0, Vnn' 0, 0 Basic Principles Ch2 - 26 Qspqfsuz!22;!bmm!uif!ofvusbm!qpjout!bsf!bu!uif!tbnf!wpmubhf! Per phase analysis (ch2.5) ©Woei-Luen Chen Basic Principles Ch2 - 27 Qspqfsuz!33;!Efmub.Xzf!Mpbe!Usbotgpsnbujpo! Proof: KCL ©Woei-Luen Chen Basic Principles Ch2 - 28 Qspqfsuz!4 4;!Efmub.Xzf!Tpvsdf!Usbotgpsnbujpo! !!!!!!!!!!!ps!)mjof!wpmubhf!up!qibtf!wpmubhf!usbotgpsnbujpo*!! Eab 3Ean e Ebc 3Ebn e Eca 3Ecn e j S 6 j S 6 j S 6 Proof: Ecn |V | 120 o Ecn |V | 120 o Ebn Ean Ebn Eab 3 |V | 30 o Ean |V | 0 o Ebn |V | 120o Ean |V | 0 o Ebn |V | 120o ©Woei-Luen Chen Basic Principles Ch2 - 29 Qspqfsuz!55;!mjof!dvssfou!up!qibtf!dvssfou!usbotgpsnbujpo! a b Ia line current Ib Ia Iab Ib Ibc c Ica Ic Ic 3I ab e 3I bc e 3I ca e j S 6 j S 6 j S 6 phase current Proof: I ca | I | 120 o I ca | I | 120 o I ab | I | 0 o I ab | I | 0 o Ibc | I | 120o ©Woei-Luen Chen Ibc | I | 120o Basic Principles I ca Ia I ab I ca 3 | I | 30 o Ch2 - 30 Qspqfsuz!6 6;!dpotubou!jotuboubofpvt!bdujwf!qpxfs!usbotgfs! !!!!!!!!!!!{fsp!jotuboubofpvt!sfbdujwf!qpxfs!usbotgfs! Instantaneous power Power System instantaneous 3I active power ɨconst instantaneous 3I reactive power ɨ0 ©Woei-Luen Chen Basic Principles Ch2 - 31 Qspqfsuz!7 7;!Dpnqmfy!bdujwf!qpxfs!>!jotuboubofpvt!bdujwf!qpxfs! !!!!!!!!!!!Dpnqmfy!sfbdujwf!qpxfs!ɫ!jotuboubofpvt!sfbdujwf!qpxfs! Complex power S3I 3 |V || I | cos I j3 |V || I | sin I 3P j3Q Power System P3I jQ3I If I ≠ 0 → Q3I ≠ 0 ©Woei-Luen Chen Basic Principles Ch2 - 32 Qspqfsuz!88;தޑـፄф߄ҢԄ! 2/!а࣬ႝᓸϷ࣬ႝࢬ߄Ң! | S3I | 3|Vp || I p |, P3I 3|Vp || I p | cos I , Q3I 3|Vp || I p | sin I 3/!аጕႝᓸϷጕႝࢬ߄Ң! | S3I | 3 |VL || I L |, P3I 3 |VL || I L | cos I , Q3I 3 |VL || I L | sin I | I p | | IL | | Ip | |V p | | IL | 3 |VL | 3 Power System |Vp | |VL | Power System vca vab vbc ©Woei-Luen Chen Basic Principles Ch2 - 33 3/6!Qfs!Qibtf!Bobmztjt! z Assumptions: 1. balanced 3I!system 2. all loads and sources wye connected 3. no mutual inductances between phases (ch3) then, (a) all the neutral are at the same potential (b) the phases are completely decoupled (c) the same phase sequence of network variables and sources ©Woei-Luen Chen Basic Principles Ch2 - 34 )ፐҁጄٯ3/23*! I2 rms peak ©Woei-Luen en Ch Chen hen Basic Principles Ch2 - 35 )ፐҁጄٯ3/24*! Find Vab 2600V Mpbe.4! Mpbe.3! a a’ I1 Power Source b c Mpbe.2! 156kW 117kVAr n b’ c’ =Dpotjefs!Mpbe.2?! a’ S1I I1 n I1 b’ c’ ©Woei-Luen Chen 115kVA PF=0.6 leading Basic Principles 156 j117 3 S1*I Va'* n Ch2 - 36 2600V Mpbe.4! Mpbe.3! a a’ Mpbe.2! 156kW 117kVAr Power Source n b’ b 115kVA PF=0.6 leading c’ c =Dpotjefs!Mpbe.3?! a’ I2 n b’ c’ ©Woei-Luen Chen Basic Principles Ch2 - 37 2600V 2 Mpbe.3! a a’ Mpbe.2! 156kW 117kVAr Power Source n b’ b Mpbe.4! 115kVA PF=0.6 leading c’ c =Dpotjefs!Mpbe.4?! a’ I3 n + + b’ c’ ©Woei-Luen Chen Basic Principles Ch2 - 38 2600V Mpbe.4! Mpbe.3! a a’ 156kW 117kVAr Power Source b c Mpbe.2! n b’ 115kVA PF=0.6 leading c’ =Dpotjefs!tpvsdf!jnqfebodf? 78.766 j11.355 26000 o 78.766 j11.355 0.6 j3.0 2624.47 5.315o 3 u 2624.47 ©Woei-Luen Chen 4545.71 V Basic Principles Ch2 - 39 Bewboubhft!pg!uisff.qibtf!tztufnt! z z Less material (conductors, iron) Constant active power transfer → constant speed and torque (single-phase systems: pulsating active power transfer) ©Woei-Luen Chen Basic Principles Ch2 - 40 $Ipnfxpsl.2! ©Woei-Luen Chen Basic Principles Ch2 - 41
© Copyright 2024 ExpyDoc