Development and assessment of leaf area index algorithms for the Sentinel-2 multispectral imager Richard Fernandes1, Marie Weiss2, Fernando Camacho3, Beatrice Berthelot4, Fred Baret2, Riccardo Duca5 1: CCRS, Government of Canada; 2: INRA, France; 3: EOLAB, Spain; 4: Magelllium, France; 5: ESTEC, European Space Agency Objectives Description of Validation Sentinel 2 (VALSE2) experiment - focus on LAI algorithm validation. Description of two LAI algorithms applicable to S2 MSI INRA Neural Network inversion of PROSAILH CCRS Red-Edge analytical solution Sentinel 2 Mission Requirements VALSE2 – Review of Algorithms L=low , P=Partial, F=Full satisfaction or Mission requirements. Fernandes et al., VALSE2 Algorithm Survey, CCRS, 2014. INRA NNET Algorithm Baret et al., VALSE2 CFI Algorithm Theoretical Basis Document, INRA, 2014. CCRS LAI Algorithm Continuous radiative transfer equation: , , , , , Interaction Eigenfunction decomposition: Scattering , , , , , , The probability a photon recollides in the canopy at the infinite scattering order. Why do we care about p? , is invariant to angular or spectral variation of is analytically related to LAI (Stenberg, 2006) 1 9 0.9 8 Clumping 0.8 0.6 p 7 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.0 1.05 0.7 0.5 Erectophile Planophile Uniform 6 5 LAI 4 0.4 3 0.3 2 0.2 1 0.1 0 0 2 4 6 8 LAI Fernandes and Gitelson, submitted to RSE. 10 0 0 1 2 3 4 5 6 7 [1-exp(-clumping*LAI)]*[a +a /(1-p)] 0 1 8 9 Relating p to S2 MSI reflectance is a function of (1) black soil reflectance (2) leaf albedo Red-edge NDVI for S2 closely related to = . 0.07 0.06 0.1 0.05 N(725nm) N(695nm) 0.08 0.06 0.04 0.03 VZA 0.02 +30º 0º -30º 0.04 0.01 0.02 0.5 0.55 0.6 0.65 0.7 NDVI S2 Band 4, Band 5 0.75 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 NDVI S2 Band 5, Band 6 Fernandes et al., VALSE2 CCRS Red-Edge ATBD, CCRS, 2014. 0.8 and CCRS LAI Algorithm LAI Estimation Inputs PUTS B4,B5,B6 urface ectance + unds on CHL, OSPECT meters, , soil refl. , . For each , and soil reflectance Model leaf albedo, from CHL using PROSPECT5 Estimate CHL from red-edge CHL index Estimate soil reflectance from regions with lowest 5% NDVI Estimate p and LAI NO Is p valid? YES Add LAI(p, ) to solution Radiative Transfer Verification INRA NNET CCRS Red-Edge CHL g/cm2 10 20 30 40 50 60 70 80 1:1 line roducer Validation INRA NNET (maize) =34, RMSE=1.13 CCRS Red-Edge (maize, soybean) 6 5 L A c tual 4 3 2 1 0 0 1 2 3 4 L Estimated N=300, MAE=0.45 5 6 idation of Sentinel 2: VALSE2 SEN3EXP SASI SEN3EXP CASI CASI EAGLE AHS SEN3EXP EAGLE HYPER AHS CEFLES AHS L2 Not Sen2FLEX SPARC2004 AHS yes CASI SPARC2003 ROSIS Yes No Sen2FLEX SPARC2003 HYMAP No Yes AHS AGRISAR AHS No No L2 CEFLES AGRISAR ometry CAIS VALSE2 Imagery Yes No Yes Yes Yes available saics No No No no no yes yes yes mporal Yes No No No No Yes Yes Yes Cloud y yes * * * Yes Yes Yes 3 3 2 2 1 1 1 diometry ectral **) ESU ority in the ocessing yes yes Yes yes Yes Yes Yes (Barrax) No San Rossore No No No barrax San Rossore VALSE2 Ground Reference Data XP EX S AR LAI WC CHL VALSE2 LAI Validation V1 A NNET Saturation in retrieval due to saturation of input bands CCRS Red-Edge CHL significantly overestmated (>>60ug/cm2) VALSE2 LAI Validation V2 A NNET CCRS Red-Edge SEN3EXP CASI 8 LAI Red-Edge v2 7 6 5 4 3 2 1 0 0 1 2 3 4 5 Ground Measurement 6 7 N=45 R2=-0.53 RMSE=1.76 B=-0.58 S=1.61 et al., VALSE2 Validation Report, EOLAB, 2014. 8 Conclusions Better co-ordination and careful processing of reference datasets so radiometry and in-situ measurements meet product specifications Need to perform forest validation (BOREAS, Harz) Sentinel Level 2P implementing NNET and CCRS algorithms but users must have patience: MODIS LAI had ~1 version/2 years. MSI8 MSI6 MERIS10 MSI5 MERIS9 0.14 MSI4 MERIS8 2 MSI and S3 OLCI Red-Edge 1 0.9 0.12 0.7 0.6 0.08 0.5 0.06 0.4 0.04 0.3 0.2 0.02 0.1 0 600 650 700 750 Wavelength (nm) 800 850 0 900 Bi-directional Reflectance Relative spectral response 0.8 0.1 How did we estimate leaf CHL? Why does CCRS Red-Edge ometimes underestimate LAI? ttawa cal/val site Equivalent CHL ug/cm2 LAI 70 5 65 4 60 55 3 50 2 45 40 1 35 30 0
© Copyright 2024 ExpyDoc