Polychromatic solitary waves in a periodic and nonlinear Maxwell system Dmitry Pelinovsky Department of Mathematics, McMaster University, Hamilton ON, Canada CRM Montreal, March, 2014 with Gideon Simpson - Drexel University Michael I. Weinstein - Columbia University Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations CRM Montreal, March, 2014 1 / 26 Introduction Shocks and Spatial Periodicity Spatially Homogeneous Quasilinear Hyperbolic System ∂t v + ∂x f(v) = 0 Smooth data generates typically a shock wave in finite time (Lax 64) Spatially Periodic Quasilinear Hyperbolic System ∂t v + ∂x f(x, v) = 0, f(x + 2π, v) = f(x, v) Can spatial periodicity stabilize shock formation? Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations CRM Montreal, March, 2014 2 / 26 Introduction Regularizing Shocks Diffusive regularization: vt + vvx = µvxx Dispersive regularization: vt + vvx = αvxxx . Dispersion from spatial periodicity (Maxwell Model): ∂t2 n2 (z)E + χE 3 = ∂z2 E , where n(z + 2π) = n(z) is the refractive index of the periodic media. Does this model display wave breaking (shocks)? Does this model admit stable localized states (solitons)? Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations CRM Montreal, March, 2014 3 / 26 Coupled Mode Equations Maxwell & Coupled Mode Equations Periodic Nonlinear Maxwell Equation where ∂t2 n2 (z)E + χE 3 = ∂z2 E n2 (z) = 1 + ǫ X p∈Z\{0} Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations Np e ipz , ǫ ≪ 1. CRM Montreal, March, 2014 4 / 26 Coupled Mode Equations Maxwell & Coupled Mode Equations Periodic Nonlinear Maxwell Equation where ∂t2 n2 (z)E + χE 3 = ∂z2 E n2 (z) = 1 + ǫ X p∈Z\{0} Np e ipz , ǫ ≪ 1. Two-wave approximation of small-amplitude resonant waves E ≈ ǫ1/2 E + (ǫz, ǫt)e i(z−t) + E − (ǫz, ǫt)e −i(z+t) yields the Nonlinear Coupled Mode Equations (NLCME) for E ± (Z , T ) in slow variables Z = ǫz and T = ǫt. Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations CRM Montreal, March, 2014 4 / 26 Coupled Mode Equations Properties of the NLCME The Nonlinear Coupled Mode Equations (NLCME) 2 2 ∂T E + + ∂Z E + = iN2 E − + iΓ E + + 2 E − E + , ¯ 2 E + + iΓ E − 2 + 2 E + 2 E − ∂T E − − ∂Z E − = i N where Γ = 3χ/2. Dispersive: E ± e i(KZ −ΩT ) with Ω2 = K 2 + |N2 |2 , Possess explicit solitary wave solutions (Aceves–Wabnitz 89), Globally well-posed in H 1 (R) (Goodman et al. 01), but Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations CRM Montreal, March, 2014 5 / 26 Coupled Mode Equations Properties of the NLCME The Nonlinear Coupled Mode Equations (NLCME) 2 2 ∂T E + + ∂Z E + = iN2 E − + iΓ E + + 2 E − E + , ¯ 2 E + + iΓ E − 2 + 2 E + 2 E − ∂T E − − ∂Z E − = i N where Γ = 3χ/2. Dispersive: E ± e i(KZ −ΩT ) with Ω2 = K 2 + |N2 |2 , Possess explicit solitary wave solutions (Aceves–Wabnitz 89), Globally well-posed in H 1 (R) (Goodman et al. 01), but ˜ Mathematically inconsistent, because the correction term E, 3 3 ∂t2 − ∂z2 E˜ = E + e 3i(z−t) + E − e −3i(z+t) + . . . , grow linearly in t. Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations CRM Montreal, March, 2014 5 / 26 Coupled Mode Equations Numerics with Soliton Data Seed NLCME Soliton (E + , E − ) into Maxwell equations, E (z, t) = ǫ1/2 E + (ǫz, ǫt)e i(z−t) + E − (ǫz, ǫt)e −i(z+t) . No periodic potential: ∂t2 E + χE 3 = ∂z2 E Small cos-periodic potential: ∂t2 E + ǫ cos(z)E + χE 3 = ∂z2 E Side pulses are absent in the NLCME. Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations CRM Montreal, March, 2014 6 / 26 Extended Coupled Mode Equations Revised Asymptotic Expansion Simpson–Weinstein’ 2011 Nonlinear and Periodic Maxwell Equation 2 ∂t2 E + ǫN(z)E + χ |E | E = ∂z2 E . Generalized Ansatz E = ǫ1/2 E + (z − t, Z , T ) + E − (z + t, Z , T ) + ǫE (1) (z, t) + . . . . Constraint on the Growth of the Correction Term Z 1 T (1) lim E dt = 0. T →∞ T 0 Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations CRM Montreal, March, 2014 7 / 26 Extended Coupled Mode Equations Integro-Differential equations for E ± (φ, Z , T ) Let N(z) = N(z + 2π). The correction term is bounded if (∂T + ∂Z )E + (∂T − ∂Z )E − Z π 1 − N(φ + θ)E (Z , T , φ + 2θ)dθ = ∂φ 2π −π Z π Γ 1 + 3 − 2 + + ∂φ (E ) + 3 |E (Z , T , θ)| dθ E , 3 2π −π Z π 1 + N(φ − θ)E (Z , T , φ − 2θ)dθ = −∂φ 2π −π Z π 1 Γ |E + (Z , T , θ)|2 dθ E − , − ∂φ (E − )3 + 3 3 2π −π where Γ ≡ 23 χ. Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations CRM Montreal, March, 2014 8 / 26 Extended Coupled Mode Equations Extended Nonlinear Coupled Mode Equations (xNLCMEs) Periodically Varying Index of Refraction N(z) = N(z + 2π) ⇒ N(z) = X Np e ipz , N0 = 0 Fourier Decomposition E ± (φ, Z , T ) = Dmitry Pelinovsky (McMaster University) X Ep± (Z , T )e ipφ . Nonlinear Maxwell Equations CRM Montreal, March, 2014 9 / 26 Extended Coupled Mode Equations Extended Nonlinear Coupled Mode Equations (xNLCMEs) Periodically Varying Index of Refraction N(z) = N(z + 2π) ⇒ N(z) = X Np e ipz , N0 = 0 Fourier Decomposition E ± (φ, Z , T ) = X Ep± (Z , T )e ipφ . Fourier amplitudes satisfy the infinite-dimensional NLCMEs: X i ip hX + + + Eq− 2 Ep+ Eq Er Ep−q−r + 3 3 hX X i ip − + Eq+ 2 Ep− ¯ 2p Ep + Eq− Er− Ep−q−r +3 = ip N 3 ∂T Ep+ + ∂Z Ep+ = ipN2p Ep− + ∂T Ep− − ∂Z Ep− Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations CRM Montreal, March, 2014 9 / 26 Extended Coupled Mode Equations Numerics with Soliton Data ± Inclusion of third harmonic (E±3 ), resolves side pulses Questions: Do the xNLCMEs admit localized stationary states (solitons)? Are localized states robust in the dynamics of the xNLCMEs? Simplifications: 1 We reduce the system of xNLCMEs near band edges to a system of coupled nonlinear Schr¨ odinger equations. 2 We use the Gaussian trial functions and variational approximations. 3 We truncate the system of equations and perform numerical continuations. Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations CRM Montreal, March, 2014 10 / 26 Localized states Localized stationary solutions Stationary decomposition −ipΩT Ep± (Z , T ) = A± , p (Z )e Amplitude equations (xNLCMEs) Γ iA′p (Z ) + pΩAp + pN2p Bp + p 3Ap 3 X q∈Z |Bq |2 + X q,r ∈Z Aq Ar Ap−q−r = 0, X X Γ ¯ 2p Ap + p 3Bp Bq Br Bp−q−r = 0, |Aq |2 + −iBp′ (Z ) + pΩBp + p N 3 q∈Z Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations q,r ∈Z CRM Montreal, March, 2014 11 / 26 Localized states Band Edge Approximation Linear approximation √ −|p||Z | |N2p |2 −Ω2 . A± p (Z ) ∼ e Exponential decay is provided by the assumption N2p = 1 for all p and Ω ∈ (−1, 1). (Therefore, N(z) is a periodic sequence of Dirac delta-distributions.) Localized states near a band edge Ω 2 A± p (Z ) = ±µUp (µZ ) + O(µ ), Ω = p 1 − µ2 . K This expansion allows us to derive coupled nonlinear Schr¨ odinger equations. Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations CRM Montreal, March, 2014 12 / 26 Localized states The coupled NLS equations Coupled Stationary Nonlinear Schr¨ odinger Equation X X |Uq |2 + Uq Ur Up−q−r = 0, Up′′ (ζ) − p 2 Up + 23 p 2 3Up where ζ = µZ . With the Fourier series, U(θ, ζ) = X Up (ζ)e ipθ p∈Zodd the system is converted to a scalar equation Z π 2 2 1 2 2 2 3 (∂ζ + ∂φ )U = ∂φ U + 3 |U(ζ, θ)| dθ U . 3 2π −π Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations CRM Montreal, March, 2014 13 / 26 Localized states Justification theorem Theorem Assume the existence of a localized state U ∈ X s of the NLS equations, ¯ φ) = U(ζ, φ), , s > 1, X s ≡ U(ζ, φ) ∈ H s (R × T) : U(ζ, satisfying the symmetry Up (ζ) = U−p (−ζ).pThere exists µ0 > 0 such that for any |µ| < µ0 , the xNLCMEs with Ω = 1 − µ2 admit a unique localized state A± ∈ X s satisfying the bound ∃C > 0 : kA± ∓ µU(µ·, ·)kX s ≤ C µ2 . H s (R × T) is a Banach algebra with respect to the pointwise multiplication for any s > 1. If U ∈ X s for s > 1, then U ∈ L∞ (R × T) and lim U(ζ, φ) = 0, |ζ|→∞ Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations ∀φ ∈ T. CRM Montreal, March, 2014 14 / 26 Localized states Existence of localized stationary states Coupled NLS equations X X |Uq |2 + Uq Ur Up−q−r = 0 Up′′ (ζ) − p 2 Up + 23 p 2 3Up The main question is to establish the existence of a localized state U ∈ X s for s > 1 satisfying the symmetry Up (ζ) = U−p (−ζ). For a scalar NLS equation at p = ±1, we have the NLS soliton 1 U±1 = √ sech(ζ). 3 Will this solution persist in the system of coupled NLS equations? Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations CRM Montreal, March, 2014 15 / 26 Localized states Energy arguments Energy functional is well defined in X s for any s ≥ 1. 2 X X X 1 1 ¯ p Uq Ur U ¯ q+r −p dζ U |Up′ |2 − |Up |2 − H= 2 p 3 R Z p∈Z Dmitry Pelinovsky (McMaster University) p∈Z p,q,r ∈Z Nonlinear Maxwell Equations CRM Montreal, March, 2014 16 / 26 Localized states Energy arguments Energy functional is well defined in X s for any s ≥ 1. 2 X X X 1 1 ¯ p Uq Ur U ¯ q+r −p dζ U |Up′ |2 − |Up |2 − H= 2 p 3 R Z p∈Z p∈Z p,q,r ∈Z Constrained variational problem minimize H subject to fixed N = Z X R |Up |2 dζ. However, H is unbounded from below, even under the constraint. Let 1/2 Up (ζ) = λn W (λn ζ) (δp,n + δp,−n ) , p ∈ Z, where W ∈ H 1 (R) is fixed and λn = n, n ∈ N. Then, H = kW ′ k2L2 − 6nkBk4L4 → −∞ as n → ∞. Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations CRM Montreal, March, 2014 16 / 26 Rayleigh–Ritz Approximations Rayleigh–Ritz Approximation Gaussian Ansatz 2 Up (ζ) = ap e −bp ζ , p ∈ Zodd , Reduced Energy HG = X p 2 √ ap2 aq2 b p ap ap2 2ap aq ar ap−q−r − p . +p −p 2 p bp bp + bq 3 bp + bq + br + bp−q−r Euler–Lagrange Equations ∇a HG (a, b) = 0, Dmitry Pelinovsky (McMaster University) ∇b HG (a, b) = 0. Nonlinear Maxwell Equations CRM Montreal, March, 2014 17 / 26 Rayleigh–Ritz Approximations Rayleigh–Ritz Approximation, Results Truncated Solutions of Euler–Lagrange Equations: No. of Modes 1 2 3 a1 0.56060 0.56321 0.56329 Dmitry Pelinovsky (McMaster University) b1 0.33333 0.33148 0.33189 a3 -0.13918 -0.14585 b3 3.9413 3.6287 Nonlinear Maxwell Equations a5 0.062822 b5 8.5577 CRM Montreal, March, 2014 18 / 26 Rayleigh–Ritz Approximations Rayleigh–Ritz Approximation, Results Truncated Solutions of Euler–Lagrange Equations: No. of Modes 1 2 3 a1 0.56060 0.56321 0.56329 b1 0.33333 0.33148 0.33189 a3 -0.13918 -0.14585 b3 3.9413 3.6287 a5 0.062822 b5 8.5577 Questions: Does the solution converge to a localized state with finite energy H? Is the alternating sign between the modes important? Does the alternating sign persist with the number of modes? Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations CRM Montreal, March, 2014 18 / 26 Rayleigh–Ritz Approximations Reduced Rayleigh–Ritz Approximation Simplified Gaussian Ansatz 2 Up (ζ) = ap e −bp ζ , with p ∈ Zodd , ap = A(−1)(|p|−1)/2 |p|−γ , bp = p2 3 Two Parameter Energy HG ≡ hG (γ, A) = A2 f (γ) − A4 g (γ) At a critical point, this expression simplifies to hG (γ, A(γ)) = Dmitry Pelinovsky (McMaster University) f 2 (γ) 4g (γ) Nonlinear Maxwell Equations CRM Montreal, March, 2014 19 / 26 Rayleigh–Ritz Approximations Reduced Rayleigh–Ritz Approximation, Results 0.9 The Gaussian ansatz 0.8 p2 2 |Up (ζ)| ∼ |p|−γ e − 3 ζ , 0.7 with 0.6 γ⋆ ∼ 1.26 produces 0.5 ˜1 h ˜2 h ˜3 h ˜4 h ˜5 h ˜6 h 0.4 0.3 0.2 0 0.5 1 1.5 γ Dmitry Pelinovsky (McMaster University) 2 2.5 U ∈ X s, s < γ⋆ Numerical verification of the condition of the theorem. 3 Nonlinear Maxwell Equations CRM Montreal, March, 2014 20 / 26 Rayleigh–Ritz Approximations Ansatz without Alternating Signs For the ansatz p2 2 Up (ζ) = A |p|−γ e − 3 ζ , p ∈ Zodd , no extrema points occur in the reduced energy dependence on γ. 0.8 0.7 0.6 0.5 0.4 ˜1 h ˜2 h ˜3 h ˜4 h ˜5 h ˜6 h 0.3 0.2 0.1 0 Dmitry Pelinovsky (McMaster University) 0.5 1 1.5 γ 2 Nonlinear Maxwell Equations 2.5 3 CRM Montreal, March, 2014 21 / 26 Stable localized states Direct Numerical Solution of Truncated NLS System NLS System X X |Uq |2 + Uq Ur Up−q−r = 0 Up′′ (ζ) − p 2 Up + 23 p 2 3Up For up to 12 modes, the structure of sign alternations persists: !’( ) ï1 ï3 ï5 ï7 ï9 ï 11 !’% !’# ! !’# ) ! Dmitry Pelinovsky (McMaster University) " # $ Nonlinear Maxwell Equations % & CRM Montreal, March, 2014 22 / 26 Stable localized states Equivalent integro-differential equation Elliptic equation (∂ζ2 + ∂φ2 )U Z π 2 2 1 2 3 = ∂φ U + 3 |U(ζ, θ)| dθ U , 3 2π −π where U(θ, ζ) = X Up (ζ)e ipθ . p∈Zodd Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations CRM Montreal, March, 2014 23 / 26 Stable localized states Time evolution of NLS Solitons in xNLCMEs i X ip hX + + + Eq− 2 Ep+ Eq Er Ep−q−r + 3 3 i hX X ip − ¯ 2p Ep+ + Eq+ 2 Ep− . = ip N Eq− Er− Ep−q−r +3 3 ∂T Ep+ + ∂Z Ep+ = ipN2p Ep− + µ = 0.4 Ep± (Z , 0) = ±µUp (µZ ), p = 1 µ = 0.1 40 40 0.55 0.5 35 0.55 0.5 35 0.45 0.4 25 0.35 t 0.3 20 0.25 30 0.4 25 0.35 0.3 t 30 + E (ζ )/µ 1 0.45 20 0.25 15 0.2 15 0.2 10 0.15 10 0.15 0.1 0.1 5 5 0 ï5 0.05 0.05 0 ζ Dmitry Pelinovsky (McMaster University) 5 + E (ζ )/µ 1 ∂T Ep− − ∂Z Ep− 0 ï5 Nonlinear Maxwell Equations 0 ζ 5 CRM Montreal, March, 2014 24 / 26 Stable localized states Time evolution of NLS Solitons in xNLCMEs i X ip hX + + + Eq− 2 Ep+ Eq Er Ep−q−r + 3 3 i hX X ip − + ¯ 2p Ep + Eq+ 2 Ep− . = ip N Eq− Er− Ep−q−r +3 3 ∂T Ep+ + ∂Z Ep+ = ipN2p Ep− + ∂T Ep− − ∂Z Ep− p=3 µ = 0.1 40 0.14 40 0.14 35 0.12 35 0.12 30 0.06 15 0.04 10 0.02 5 0 ζ Dmitry Pelinovsky (McMaster University) 5 0.1 25 0.08 t t 0.08 20 + E (ζ )/µ 3 0.1 25 0 ï5 30 20 0.06 15 0.04 10 0.02 5 0 ï5 Nonlinear Maxwell Equations + E (ζ )/µ 3 µ = 0.4 0 ζ 5 CRM Montreal, March, 2014 24 / 26 Stable localized states Time evolution of NLS Solitons in xNLCMEs i X ip hX + + + Eq− 2 Ep+ Eq Er Ep−q−r + 3 3 i hX X ip − + ¯ 2p Ep + Eq+ 2 Ep− . = ip N Eq− Er− Ep−q−r +3 3 ∂T Ep+ + ∂Z Ep+ = ipN2p Ep− + ∂T Ep− − ∂Z Ep− p=5 40 0.08 35 0.07 35 0.07 30 0.06 30 0.06 25 0.05 25 0.05 20 0.04 20 0.04 15 0.03 15 0.03 10 0.02 10 0.02 5 0.01 5 0.01 0 ï5 0 ζ Dmitry Pelinovsky (McMaster University) 5 t 0.08 0 ï5 Nonlinear Maxwell Equations 0 ζ + E (ζ )/µ 5 µ = 0.1 40 + E (ζ )/µ 5 t µ = 0.4 5 CRM Montreal, March, 2014 24 / 26 Conclusion Conclusion Summary: Our results suggest that the localized states are robust for the nonlinear periodic Maxwell model. Existence of such states do not eliminate a possibility of shocks for large amplitudes. Further directions Prove the existence of localized solutions in the coupled NLS equations (or in the equivalent elliptic problem) Justify the coupled NLS equations in the original Maxwell system with periodic Dirac delta-distributions Consider localized solutions in the Maxwell system with bounded refractive index. Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations CRM Montreal, March, 2014 25 / 26 Conclusion References G. Simpson and M.I. Weinstein, “Coherent structures and carrier shocks in the nonlinear Maxwell equations”, Multiscale Model Simul. 9 (2011), 955–990. D.E. Pelinovsky, G. Simpson, and M.I. Weinstein, “Polychromatic solitary waves in a periodic and nonlinear Maxwell system”, SIAM J. Appl. Dynam. Syst. 11 (2012), 478–506. D.E. Pelinovsky and D.V. Ponomarev, “Justification of a nonlinear Schr¨ odinger model for laser beams in photopolymers”, Zeitschrift f¨ ur angewandte Mathematik und Physik (2014), in print. Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations CRM Montreal, March, 2014 26 / 26 Conclusion References G. Simpson and M.I. Weinstein, “Coherent structures and carrier shocks in the nonlinear Maxwell equations”, Multiscale Model Simul. 9 (2011), 955–990. D.E. Pelinovsky, G. Simpson, and M.I. Weinstein, “Polychromatic solitary waves in a periodic and nonlinear Maxwell system”, SIAM J. Appl. Dynam. Syst. 11 (2012), 478–506. D.E. Pelinovsky and D.V. Ponomarev, “Justification of a nonlinear Schr¨ odinger model for laser beams in photopolymers”, Zeitschrift f¨ ur angewandte Mathematik und Physik (2014), in print. Merci beaucoup pour votre attention! Dmitry Pelinovsky (McMaster University) Nonlinear Maxwell Equations CRM Montreal, March, 2014 26 / 26
© Copyright 2025 ExpyDoc