Boris Gänsicke Observational population studies of post CE binaries Outline 1. Looking back ~10 years 2. Post-common envelope binaries from SDSS (+ CSPNe) - identification, stellar parameter - orbital period distribution - αCE , recombination energy & magnetic braking - low mass WDs - SNIa progenitors: something different 3. Single He-core WDs – link to planetary systems? 4. Extremely low-mass WDs 5. Magnetic fields 6. Subdwarfs in binaries Theory is good – but need some observational tests uble degenerate WD binaries – popular as Ia progenitor candidates, • large fraction are single lined binaries ⇒ only 1 mass • complex evolution, 2CEs • rare, 14 known in 2001 Nelemans et al. 2001, A&A 365, 491 Theory is good – but need some observational tests D+MS binaries: • accurate parameter for both stellar components • simple evolution, 1 CE • also rare, 30 in 2003, • seriously biased: young WDs, low-mass companions Blue-excess surveys Schreiber & Gänsicke 2003 A&A 406, 305 SDSS multi-colour revolution Rebassa-Mansergas et al. 2010, MNRAS 402, 620 Smolcic et al. 2004, ApJ 615, L141 >2300 WD+MS binaries Raymond et al. 2003, AJ 125, 261; Silvestri et al. 2006, AJ 131, 1674S & 2007, AJ 134, 741; Augusteijn et al. 2007, MNRAS 382, 1377R; Heller et al. 2009, A&A 496, 191; Rebassa-Mansergas et al. 2007, MNRAS 382, 1377 & 2010, MNRAS 402, 620 & 2012, MNRAS 419, 806R & 2013, MNRAS 433, 3398; Liu et al. 2012, MNRAS 419, 806, Wei et al. 2013, MNRAS 431, 1800 + Ren et al. 2013, AJ 146, 82R (LAMOST, see her talk later today) Do not believe and WD+MS binary out in the literature Rebassa-Mansergas et al. 2010, MNRAS 402, 620 Stellar parameters: spectral decomposition ⇒ MS spectral type (+/- 1/2 class) Spectral type-mass-radius relation: ⇒ MS mass & radius (~20-50%) Stellar parameters: WD Balmer line fit ⇒ Teff & log g Evolutionary models, mass-radius relation: ⇒ WD mass & radius (~10-30%) ⇒ WD cooling age You need more precision? Eclipsing WD+MS binaries 2009: seven eclipsing WD+MS binaries 2013: 49 eclipsing WD+MS binaries Masses & radii to a few %, see Steven Parsons talk Pyrzas et al. 2009, MNRAS 394, 978 Nebot Gomez-Moran et al. 2009, A&A 495, 561 Drake et al. 2010, arXiv:1009.3048 Becker et al. 2011, ApJ 731, 17 Law et al. 2012, ApJ 757, 133L Pyrzas et al. 2012, MNRAS 419, 817 Almenara et al. 2012, MNRAS 420, 3017A Parsons et al. 2013, MNRAS 429, 256 Radial velocity follow-up: ~1/3 of SDSS WD+MS binaries are PCEBs Orbital period distribution Nebot Gomez Moran et al. 2011, A&A 536, 43 Radial velocity bias: small, and accountable Nebot Gomez Moran et al. 2011, A&A 536, 43 Orbital period distribution Nebot Gomez Moran et al. 2011, A&A 536, 43 Observations vs theory Nebot Gomez Moran et al. 2011 A&A 536, 43 Willems & Kolb 2004, A&A 419, 1057 Binary central stars in planetary nebulae e.g. De Marco et al. 2004, ApJ 602, L93 & 2008, AJ 136, 323 & 2013, MNRAS 428, 2118; Miszalski et al. 2009, A&A 496, 813 & 2013, MNRAS 428, L39; Jones et al. 2014, A&A 562, 89 Orbital periods of CSPNe vs WD+MS Miszalski et al. 2009, A&A 496, 813 Hillwig 2013, ASPC 469, 277 A wider perspective HST/ACS imaging of WD+MS binaries Farihi et al. 2010, ApJS 190, 275 Perfect agreement with SDSS WD+MS RV results Farihi et al. 2010, ApJS 190, 275 Nebot Gomez Moran et al. 2011 A&A 536, 43 Reconstruction: α≈0.2-0.3 No dependence on M2 (but the sample only spans 0.1-0.4M๏) Zorotovic et al. 2010, A&A 520, 86 ⇒ Need WD+MS binaries with earlier companions (see Alberto Rebassa-Mansergas talk) See also de Marco et al. 2011, MNRAS 411, 2277 Long-period WD+MS binaries: Recombination energy? Not necessary for these two systems Rebassa-Mansergas et al. 2012, MNRAS 423, 320 Confirmation of (disrupted) magnetic braking fully convective Schreiber et al. 2010, A&A 513, L7 Mass loss: ~0.8-8Mʘ stars become ~0.6-1.4Mʘ WDs CO-cores He-cores ONe-cores, mergers Liebert et al. (2005, ApJS 156, 47) ⇒ significant mass loss! Direct proof of the CE origin of He-core WDs Rebassa-Mansergas et al. 2011, MNRAS 413, 1121 Direct proof of the CE origin of He-core WDs Rebassa-Mansergas et al. 2011, MNRAS 413, 1121 Mass dependence on Porb PCEBs with He core WDs have shorter orbital periods Zorotovic et al. 2011, A&A 536, L3 Cataclysmic variables ?? Common knowledge: the?WD mass should be eroded by classical nova eruptions (e.g. CVs versus pre-CVs and PCEBs <Mwd> = 0.83 ± 0.23 M๏ <Mwd> = 0.67 ± 0.21 M๏ <Mwd> = 0.58 ± 0.20 M๏ Zorotovic et al. 2011, SNIa progenitors – something different • Either the present-day CVs descended from progenitors that were more massive than those of the present-day pre-CV population ... And likely underwent thermal-timescale mass transfer. (search for WD + FG binaries, see Alberto Rebassa-Mansergas talk) • Or CV white dwarfs grow in mass (against most CN theory) ⇒ Both options will produce viable SNIa progenitors see Toonen et al. arXiv:1403.4797 for an alternative discussion Mass loss: ~0.8-8Mʘ stars become ~0.6-1.4Mʘ WDs CO-cores He-cores ONe-cores, mergers A fraction of He-core WDs shows no radial velocity variability ... apparently single stars Nelemans & Tauris 1998, A&A 335, L85: Giant planets Liebert et al. (2005, ApJS 156, 47) A He core WD with a planetary debris disc Close-in giant planet + rocky material further out Farihi et al. 2012, MNRAS 421, 1635 Extremely low-mass WDs in double-degenarate binaries ~60 binaries, including five eclipsing systems SDSSJ0651+2844 Porb=12.75min Brown et al. 2010, ApJ 723, 1072 & 2011, ApJ 737, L23 & 2012, ApJ 744, 142 & 2012, ApJ 751, 141 & 2013, ApJ 769, 66; Kilic et al. 2011, ApJ 727, 3 & 2011, MNRAS 413, L101 & 2012, ApJ 751, 141 & 2014, MNRAS 438, L26 ; Kawka et al. 2010, A&A 516, L7K; Steinfadt et al. 2010, ApJ 716, L146; Marsh et al. 2011, ApJ 736, 95, Parsons et al. 2011, ApJ 735, L30; Vennes et al. 2011, ApJ 737, L16 Extremely low-mass WDs Several ELM white dwarfs are pulsating Hermes et al. 2012, ApJ 750, L28 & 2013, ApJ 765, 102 & 2013, MNRAS 436, 3573 ⇒ Core & envelope mass and composition from asteroseismology Where do magnetic WDs get their field from? • Liebert et al. 2005, AJ 129, 2376: Where Are the Magnetic White dwarfs with Detached, Nondegenerate Companions? • >2300 WD/MS binaries ... And not one with a magnetic WD ... not one...? Simulated magnetic WD + MS spectra Easy to recognise! Silvestri et al. 2007, AJ 134, ... not one ...? ... ST LMi, a polar, in a low state ... Schmidt et al. 2005, ApJ 630, L173; Debes et al. 2006, ApJ 647, L147; Howell et al. 2008, AJ 136, 2541; Breedt et al. 2012, MNRAS 423, 1437 Dynamos in the CE phase? Potter & Tout 2010, MNRAS 402, 1072 But see Steven Parson’s talk Subdwarfs in binaries & MUCHFUSS Geier et al. 2011, A&A 526, 39 & 2011, ApJ 731, L22 & 2011, A&A 530, 28 & 2014, A&A 562, 95; Ostensen et al. 2013, A&A 559, 35 See Stephan Geier’s talk on Friday and Thomas Kupfer’s poster Conclusions • The past decade has seen an explosion in the number of known post-common envelope binaries. • Several high-fidelity samples with accurate stellar and binary parameter are in the works (WD+MS, CSPNe, WD+WD, sdB+MS, sdB+WD...) The future looks bright • GAIA will provide volume-limited samples of PCEBs • LSST & GAIA ⇒ 100s of eclipsing systems • WEAVE & 4MOST ⇒ industrial scale spectroscopy
© Copyright 2024 ExpyDoc